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PREFACE

At its Fall 1980 meeting in Aix en Provence, France, the AGARD Structures and
Materials Panel (SMP) held a Specialists' Meeting on "Boundary Layer Effects in Unsteady
Airloads".

The meeting was conceived, organized and chaired by Dr Gabriel Coupry of France. It
was a fitting finale to his term as Chairman of the Subcommittee on Aeroelasticity as he
moved to his new post of Chairman of the entire SMP.

Mr Walter J.Mykytow of the United States also played a prominent role in the meeting.
lie compiled and edited the comments of the Recorders, added his own comments from
many years as an outstanding aeroelastician, and prepared the Summary paper.

I am sure that all the Members of the Subcommittee on Aeroelasticity join me in
dedicating this report to Dr Coupry and Mr Mykytow in appreciation for their many years
of leadership in aeroelasticity.

JAMES J.OLSEN

Chairman, Subcommittee

on Aeroelasticity
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INTRODUCTORY REMARKS ON BOUNDARY LAYEP
EFFECTS ON UNSTEADY AIRLOADS

by
Helmut Zimmermann

Vereinigte Flugtechnische Werke GmbH, D-2800 Bremen,
Germany

For a long time flutter calculations for aircraft were performed satisfactorily by
using unsteady airloa,s which wers derived from thin-wing theory. For flutter cases in-
volving control surface motion, and for even more complicated control-surface-tab systems,
however, it turned out that the theoretical values for the coefficients of hinne moment
nc, lift kc, and moment mc due to control surface motion had to be corrected with the
aid of more or less suitable experimental values. The theoretical value for the hinge
moment nc, as well as the force kc, were too large in comparison with their corresponding
measured values (Fig. 1). This discrepancy was ascribed to the fact that the theory neq-
lected airfoil thickness and boundary layer effects.

With the emergence of the "advanced wing" designed to produce its optimum performance
in the transonic speed range, the "thin-airfoil forces" are, strictly speakinq, no lonqer
appropriate fur flutter calculations in this speed range. The "transonic dip" in the
flutter speed which occurs lere is not predicted by linear theory. The reason that they
continue to be applied to flutter investigations is not only that linear theory has been
developed to the point of being able to handle a large number of aircraft confiqurations,
but also because of the difficulties in theoretically predicting steady and unsteady air
forces for the transonic range with sufficient accuracy and industrially suitable methods.

Whereas in linear wing theory the unsteady pressure distribution may be treated in-
dependently of the steady pressure distribution - which properly reflects the physical
situation in the subsenic range - there exists a strong interaction between steady and
unsteady pressure ir the transonic range, i. e. the unsteady pressure distribution, apart
from its Mach dependence, depends on the profile, its mean incidence, and its mean flap
angle. During the last few jears a number of unsteady pressure distributions have been
measured in wind tunnels on conventional and advanced airfoil profiles for the transonic
speed range. Furthermore numerical methods, mostly of the Finite Difference kind, were
developed to solve the partial differential equations governing inviscid transonic flow,
the equations being the Euler equations, the full-potential equation, or the small per-
turbation equation, depending on the degree of simplification. These methods take into
account profile thickness as well as shock wave effects. If no provisions are made in
these calculations for boundary layer effects, then the following discrepancies between
calculated and measured pressle distributions are likely to arise.

The inclusion of profile thickness effects already in the subsonic ranqe leads to an
overestimate of the unsteady wing derivatives ka, kb, ma, mb, kc and mc, whose values
(7ig. 1, Fig. 2) deviate further from measured ones than those obtained by thin-wino
theoLy. Only the hinge moment coefficient is improved by thickness effects. For the
transonic speed range the numerical wethods --ntioned above are capable of predicting
shocks in the pressure distributions, at least qualitatively, whereas the thin-airfoil
theory makes no provision at all for the existence of imbedded shocks.

Because of this the numerical methods for solving the transonic equations are basi-
cally superior to the methods of thin-wing theory. The size and the location of the shock,
however, are not predicted correctly by inviscid theory, and wing derivatives are even
more overestimated than those for the subsonic range, (Fig. 3). The main reason for the
discrepancy between measured and calculated pressure is evidently due to the omission of
boundary layer effects, bringing us to the tcpic of our meeting.

Most comparisons between experimental and calculated values have shown that the in-
fluence of viscosity on steady and unsteady pressure is not negligibLe for transonic flow,
and for rear loaded profiles. This is not surprising since there woutd be no lift on an
airfoil in a frictionless flow. The fact that most theories for frictionless flows are so
successful in predicting lift depends on the Kutta condition which effectively replaces
the physical influence of friction in inviscid flow. One cannot, of course, expect that a
single condition like that is capable of modelling all viscous effects in a flo; that is
as complex as the transonic one.

If one starts with a comparison of calculated and measured steady transonic pressure
distributions for an airfoil, it turns out the ealculated shock is larger and is located
farther downstream than the medsured one, if the FD equations were set up in conservation
form, meaning that the requirement of conservation of mass was satisfied across the shock.
If conservation of mass is neglected the shock moves upstream and becomes smaller and thus
shows a better agreement with measured valt:es, (Fig. 4). One physical explanation would be
as follows: if the numerical procedure does not autcmatically satisfy the ontinuitv
equation across the shock, mass is in general produced behind the shock. This can 1e
interpreted as a thickening of the profile behind the shock, thus producinq a forw.0rd
shift and a decrease of the shock in the same way as a thickening )f the boundary lAyer
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behind the shock. A similar result can be produced, as Yoshihara and Magnus have shown by
a "viscous ramp" behind the shock, whose inclination and height can be deduced from measured
shock values such that calculated shock values match the measured ones.

In these considerations the boundary layer is assumed to be adequately represented
by its displacement thickness on the airfoil. Is this approach to the problem correct?
What really happens in the flow in the vicinity of an airfoil? Because of the no-slip
condition at the airfoil boundary and because of viscosity vortices are generated which
are transported by convection and diffusion into the flow region around the airfoil and
into its wake. For unseperated flows with large Reynolds numbers - which are going to be
looked at here - vortices are distributed by diffusion only a short distance from the
airfoil wall, before they are swept away by the flow. Outside of this distance, and out-
side of the wake there are no vortices, i. e. the flow there becomes potential flow. The
region around the airfoil in which vortices occur are the boundary layer, and a relatively
thin wake. With the exception of the wake which is treated somewhat differently, the
following iterative method for calculating pressure distributions is in principle possible:

(1) Calculation of pressure distribution over the original or thickened profile

(2) Calculation of the boundary layer thickness produced by the previously calculated
pressure distrih tion

(3) Addition of the boundary layer thickness to the profile

This approach of changing the profile by adding the boundary layer thickness presupposes
that the pressure across the boundary layer does not vary appreciable. This condition,
however, is not satisfied for transonic flows in the vicinity of the shock and the wake,
and is especially pronounced for supercritical profiles. For this case the boundary layer
equations must be extended to include the pressure gradient normal to the boundary layer.
This implies furthermore that the pressure distribution calculated for the thickened
profile by potential theory cannot be applied to the real profile without some recal-
culation.

For the purpose of the applications considered here the boundary layer may always
be assumed to be turbulent except for the nose region and the very thin laminar sublayer.
A deterministic description of the processes within the boundary layer is not possible.
It consists of eddies which have a micro- and a macrostructure. The physical relations
in viscous flow are described by a balance of vortex production, their diffusion, convection,
and dissipation.

The mean values of the flow quantities satisfy the Reynolds-averaged Navier-Stokes
equations, if the velocity fluctuations are represented by shear stresses similar to
those in laminar flow. The resulting viscosity depends on time and spatial coordinates,
and is much larger than the one defined for laminar flow. To determine these shear stresses
the turbulence is represented by various models. With the aid of these turbulence models
the mean square values and the cross-correlation factors of the velocity fluctuations are
related to the mean flow values. Since the Navier-Stokes equations contain only the mean
values of the velocities and shear stresses, the relations between shear stress and
velocity furnished by the turbulence models close the system of Navier-Stokes equations.

The turbulence is described by "eddy viscosity" models of different levels of
sophistication, such as

(1) algebraic relations derived from the mixing-length hypothesis

(2) the so-called k-E model which employs two additional differential equations
describing the turbulence energy k and the dissipation E

Since, as mentioned above, viscous flow is confined to a thin boundary layer and wake
for high Reynolds numbers, the Navier-Stokes equations supplemented by the equations
derived from the turbulence models can be simplified to the boundary layer equations.
In these equations the change in pressure across the boundary layer is usually neglected.
If the turbulence is described by an algebraic equation the boundary layer equations
can be solved by integral procedures. For more complicated turbulence models finite-
difference methods are used for the solution.

For the purpose of modeling and solving boundary layer problems, which may also be
applied to the wake, a number of methods are available in the literature. There also
exist a number of solutions of the closed Reynolds-averaqed Navier-Stokes equations
for the entire space.

Some of the publications are associated with persons who present papers at this
meeting, making it superfluous to enter into details or to quote publications.
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AN ASSESSMENT OF THEORETICAL MODELS

FOR VISCOUS AND TRANSONIC FLOW

Earl H. Dowell
Professor

Marc H. Williams
Research Staff

Princeton University
Princeton, N. J. 08544

USA

M. Ray Chi

General Electric Company
Evendale, Ohio 45215

USA

SUMMARY

Some current and proposed methods of treating viscous and transonic effects in theoretical aerodynamic
models suitable for aeroelastic applications are reviewed critically. Where possible, theoretical results
of such models are compared %ith experiment. Topics discussed include shear flow models (Princeton), sin-
plified models for treating separation (Sisto, Princeton, Chi), classical linear theory, a local lineari-
zation theory, a transonic linear theory (Eckhaus-Williams), a transonic nonlinear (small disturbance)
theory (LTRAN2), the experiment of Davis, and the experiment of Tijdeman. It is concluded that (1) shear
flow models, which have proven very accurate in taking into account boundary layer effects for panel
flutter, are likely to be less so for lifting surface flutter; (2) an extremely simple model of separation
shows promise, (3) for many applications in transonic flow, transonic linear theory will be adequate; (4)
as the reduced frequency, k, increases nonlinear effects decrease; (5) the concept of an aerodynamic trans-
fer function remains useful even in the transonic regime; (6) for the transonic regime a composite aero-
dynamic representation in k using various aerodynamic models may be extremely useful.

LIST OF SYMBOLS

a one half of peak-to-peak displacement of wavy wall; also plate length

b plate width

CL ' C lift, moment coefficients
'M

CL  CM  lift, moment curve slope
(I 1.1

C M flap hinge moment

Cp Cp pressure coefficients

c airfoil chord

cp flap chord

d stagger distance

h plate thickness; also vertical distance between two neighboring blades

2 3K (yl) M;T/8 )

k wc/U.; reduced frequency

M Mach number

N exponent in power law for bou,dary layer velocity profile

p perturbation pressure

s blade pitch (leading edge distance) for cascade; also (E'tUJc)/M

t time

U, W flow velocity components

x, z spatial coordinates

X PCH pitching axis location

*The work described here was supported by the NASA Ames, Langley, and Lewis Research Centers and also
the Pratt and Whitney Corporation.
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x shock locations

a wavenumber; ; 2n divided by wavelength

a CH n/2 - y

.i mean incidence angle

ao 0 1 mean angle of attack; dynamic angle of attack

(I - MD

6 boundary layer thickness

A( ) denotes change in quantity

y ratios of specific heats

A staffer angle (NASA convention)

a non-dimensionless dynamic pressure above which flutter occurs; see Ref. 1-4F

1air/plate mass ratio; see Ref. 1-4

2 2
Vk M,8 2

0 phase angle

a inter-blade phase angle

T pitch to chord ratio for cascade, s/c; also thickness ratio of airfoil

Wfrequency

Subscripts

freestream

L local; also lift

M moment

max maximum

pot potential

+, - upper, lower

0, 1 mean, dynamic

TE trailing edge

Superscripts

c where shock first forms

sc where shock reaches the trailing edge

INTRODUCTION

The paper rather naturally divides into three parts. Part I considers shear flow models as a possible
inviscid representation of the effects of the boundary layer on unsteady airfoil aerodynamics, Part II con-
siders a highly simplified, again inviscid, model of separation and its effects on unsteady aerodynamics,
and Part III considers the inviscid, transonic problem.

Some recommendations for further work are made, combining the various models discussed in Parts I, II
and III.

Because of the range of topics treated, the paper is of necessity concise. The authors will be con-
tent if the reader retains the essence of the conclusions and is encouraged to consult the principal orig-
inal sources.

PART I - SHEAR FLOW MODELS FOR BOUNDARY LAYERS

In Ref. 1-1 a general theory of planar disturbances in inviscid parallel shear flows, analogous to
thin-wing theory in potential flows, has been developed. Integral relations between surface pressure and
deformation are obtained that are similar to, and can be solved by the same numerical methods as, those of
linear potential flow theory. Computed result- are shown that illustrate the effects of a model turbulent
boundary layer on various lifting and nonlifting surfaces, including an elastic panel in low supersonic
flow and an airfoil control surface in subsonic flow.

The physical model employed is that of a small (linearized) perturbation about a mean flow which is
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strongly non-uniform normal to the aerodynamic surface and weakly nonuniform parallel to the surface.
Hence the mean flow is typically that of a turbulent boundary layer and is taken from measurement (or,
in principal, from a solution to the Navier-Stokes equations). In the equations for tile perturbation
per -.e, however, the direct effects of viscosity are ignored. That is - it sisiply, the Reynolds
number is finite in the mean flow equations but infinite in 0i- ,iturbation equations. There is a
Reynolds number effect (though weak) in the )''+ , .- ,ever, by virtue of the appearance of (known) coef-
ficients which are properties of the r,,.,1 tlow. Typically an N power law velocity profile is used to
dcici,be the mean fl

For the full theory the reader is referred to Refs. 1-i and 11-2. Here we focus on results from tth,
model and assess their meaning. Of course, a strong motivation behind using such a model is its relative
sirplicity. Indeed, with the fundamental theory which has been developed, numerical calculations to
obtain solutions are no more difficult than those for classical linear, potential flow theory.

Results will be discussed for three physical situations, for all of which corresponding experimental
data are available.

" steady flow over a wavy wall at transonic Mach numbers
" flutter of a plate at low supersonic Mach numbers
" hinge moment on a NACAb4AO06 airfoil at high subsonic Mach numbers.

In Fig. I-1 tire perturbation pressure, p, on a wavy wall is shown for several subsonic freestream Mach
lumbers, M , as a function of boundary layer thickness 6. 2i/nt is the wall wavelength, 2a the peak-to-
leak wall displacement and p the corresponding wall pressure as determined by classical, linear, poten-
tial flow theory. In Fig. IUtresults of this type are compared to the experimental data of Ref. 1-3.
The agreement is excellent. In Figs. 1-3 and 1-4, a similar comparison is made for M = 1.1. For M >1,
there is a spatial phase shift between wall pressure and wall displacement as shown in Fig. 1-4. For
V < I there is no such sIii ft. Again the agreement between theory and experiment is excellent. Perhaps
this is not surprising since the ratio, , boundary layer thickness to wall wavelength, is smaller
than one and hence a (ieai'ly) parallel shear flow model would appear appropriate. Fven so the closeness
of tile agreement for 16 as large as four is most encouraging.

Consider now a similar, but more complex, flow, i.e., the unsteady flow over an oscillating plate.
Here the comparison is less direct (for the aerodynamicist). Flutter boundaries are considered wherein
the vhear flow model has been used in the theoretical calculations 

I - 4 . 
In Fig. I-5, the dynamic pressure

at which flutter occurs, \*, is shown vs. Mach number for two values of boundary laver thickness to length
of the elastic plate, 6/a. F

The experimental results for 6/a = 0 are obtained by extrapolation of data. Considering the complex-
ity of the physical situation, which includes the d-namics of the elastic plate as well as those of tile
fluid, the agreement between theory and experiment is remarkably satisfying.

Now we shall turn to a lifting problem, namely the flow over a control surface. Although the model
may be used for overall pitching of an airfoil, for example, the control surface problem is more appropri-
ate physically because it more nearly meets the criterion fundamental to the validity of the shear flow
model,-1 of a slowly varying boundary layer thickness over the length of the control surface. Indeed the
shorter tile control surface chord to total airfoil chord the better one may expect the shear flow model to
he, at least as long as the control surface chord remains much larger than tire laminar sublayer thickness
of the boundary layer.

In Fig. I-o static hinge moment for a NACA64AO06 airfoil with a twenty-five percent trailing edge
chord is shown. The experimental results are from Ref. I-5. Theoretical results are shown for various
boundary layer to airfoil chord ratios, 5/c. The exact 6/c is not known, but is probably near .OS. The
agreement is not quantitative; all one can say is that the shear layer model provides a correction of the
correct sign and magnitude. Clearly, above the airfoil critical Mach number, transonic thickness effects
dominate which are not presently taken into account by the shear flow model.

The conclusions to be drawn are more or less clear.

* Where aerodynamic surface profile thickness effects are small and tile boundary
layer thickness is small compared to the characteristic wavelength dimension of
the aerodynamic surface, the shear flow model works very well.

" Where aerodynamic profile thickness effects are important, the shear flok model
does less well as expected.

* A useful line of research would be to combine shear flow and proile thickness
effects into a single aerodynamic model. This is possible ithin the framework
of transonic linear theor" using the method of matched asymptotic expansions Oil
the aerodynamic ,reen's function. There is an analogy to the procedure already
used to obtain a composite aerodynamic kernel function for unsteady, shear flows
by combining the kernel function for a steady, shear flow with that for an
unsteady, potential flow,-I .

P.\RT Ii - A SIMPI. IIll MOPF I. FOR SFIARATEH) FLOWS
,A I-dimensiona ImalI perturba t ion theory' has been developed by Si sI 1-11-2 I - Williams

I :hiI I - I 
and others to take into account tie effects of ai rfoi I self- induced flow separat ion and fluid

comp ress ibi I ty On unsteady aerodynamic forces due t c the I1lade vibrat i ern of (an isolated ai rfoi I or) a
rect i I inear stalled cascade. Here we closely follow Phi's discussion l -1 V. The steady mean low is asumed
to b( stbsonic and separates at an identical and fixed point along the airfoil chords. A kernel (;reern'si
funct ion approach is employed to solve the problem for a given cavitation distribhution in tile separated
flow region. Calculated results for lift and moment coefficients show reasonab l y good correlation with
other theor\ and experimental results. .Also appl ication of the aerodynamic model to flutter prediction
of a repre;entative far stage shows qualitative agreement with measurements, whereas tile classical attached
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flow aerodynamic model fails to predict any flutter at all.

The basic flow model is shown in Fig. 11-1. The distinction between this model and the classical
attached flow model is that in the separated flow region on the airfoil the pressure is given (for
example, the local pressure is assumed equal to the freestream pressure) and the downwash on the airfoil
in the separated flow region is an unknown to be determined. Elsewhere on the airfoil, as in classical
attached flow, the downwash is known and the pressure is to be determined. As a result of the relatively
simple flow model, a kernel (Green's) function approach similar to, but more general than, its classical
nonstalled (non-separated) counterpart is developed. Because of its elliptic nature, the complex mixed
boundary value problem is transformed into two Fredholm integral equations. A standard collocation
method is used to solve the two resultant integral equations. The solution of one integral equation
yields the upwash distribution in the separated flow region. With the complete upwash informaion now

known, the other integral equation is solved for the pressure differential across the airfoil

Fig. 11-2 shows the aerodynamic damping in pitch versus the reduced frequency based on the airfoil
full-chord and upstream flow velocity at zero Mach number. Relevant cascade parameters are stagger angle
of 450, solidity of 1, and inter-blade phase angle of 1800. All blades are at a mean angle of attack of
150 and the mean flow separates at the leading edge. Airfoil thickness ratio is 4%. The top surface of
each blade was a circular arc and the lower surface a flat plate. These parameters were chosen to match
Yashima and Tanaka's experiment

I
l
-5 

in which an 11-blade linear cascade was forced to pitch about the
quarter chord in a water tunnel at a Reynolds number of approximately .5 x ls. Flow visualization con-
firmed leading-edge flow separation occurred at a mean angle of 150. Yashima and Tanaka's theoretical
results, based upon a free-streamline theory in incompressible flow with leading edge separation, showed
torsional instabilities in the relatively low frequency range. The present theory agrees reasonably well
with their experimental data. It is noted that classical attached flow theory does not predict torsional
instability for these parameters.

Results have also been obtained for compressible flow over cascades and for flutter prediction of the
F1O0 engine

II-4
. The latter is encouraging in that the separated flow model appears to describe the

essence of the flutter mechanism where, by contrast, the attached flow model failed to predict any flutter
whatsoever.

PART III - NONLINEAR EFFECTS IN UNSTEADY TRANSONIC AERODYNAMICS

The aeroelastician uses linear dynamic system theory for most aeroelastic analysis. The motivation
for doing so is clear. Extensive experience, understanding, and effective computational/experimental
procedures have been developed for linear systems. By contrast, although nonlinear methods of analysis
and experimentation are available, the results are far more expensive to obtain and also more difficult
to interpret. Hence linear models, where applicable, are very powerful, relatiiely simple, and extremely
valuable. Thus it is highly important to determine the domain of validity of any linear model. For
example, in panel flutter or control surface flutter, it is known that structural nonlinearities may be
important. Here our concern is with possible aerodnamic nonlinearities in transonic flow. Of course,
aerodynamic nonlinearities may arise in other flow regimes, however it is transonic flow where they tend
to be most important. Indeed it is sometimes said that the transonic flow regime is inherently nonlinear.
Unqualified, this statement is incorrect. At any Mach number for any airfoil, if the angle of attack is
sufficiently small, the aerodynamic forces and shock motion will be linear in the angle of attack. More-
over as the frequency of the angle of attack motion increases, the range over which linear behavior per-
sists increases. It is our purpose here to study when linear or nonlinear behavior occurs using as our
principal analytical method the low frequency, transonic small disturbance (LTRAN2) procedure of Ballhaus
and GoorjianIII-l,III-2. Any other present or future nonlinear aerodynamic method could (and should) be
used for similar purposes.

In this respect it is of interest to display the results of Figs. III-la and III-lb, which show lift
and pitching moment divided by angle of attack for a NACA 64A010 airfoil at M_ = .8 for various reduced
frequencies. The mean steady angle of attack is cc = 00, and the dynamic angle of attack is al = 1.00.

• 111-3
Results from several theories and one experiment are shown. Except for flow separation, not accounted
for by current inviscid transonic aerodynamic methods, Davis

III- 3 
observed no significant nonlinearities

in a1 in his experiment. The various theoretical methods whose results are shown are

" classical theory (i.e., the airfoil thickness is set to zero and the
mean flow is uniform everywhere)

" Williams' theory
II
1

-4
,111

-5 
(linear in al; theoretical or experimental

data are used to locate the steady state shock and its strength which
are determined by (ao and) the airfoil profile; the flow ahead and
behind the shock is taken as uniform in the current version of the
method, but the shock moves as a1 varies

* LTRAN2
I
1

I-l II I-2 
(nonlinear in (both o and) a1; transonic small

disturbance theory; low frequency). See YangI
II-4 

for these specific
results

" TRACI (nominally the same as LTRAN2, but linear in a1 with a less sat-
isfactory treatment of the shock). See YanglII

-6 
for these specific

results.

" Magnus
1
1
-7 

(solution of the complete, nonlinear, inviscid Euler
equations; non-potentials).

Ill-8
Also shown is a steady flow result provided by Bland 

- 
using the well known steady flow method

of Bauer, Garabedian and Korn
11-9

. These results, though only for one Mach number and one airfoil,
remind one that what constitutes abest theory depends upon the particular flow conditions, common defi-
ciencies of all available theories, e.g., omission of viscosity, and the eye of the beholder. See
WilliamsIl

I-5
for other comparisons of his method and LTRAN2 with Tijdeman's experimentslll-lO. It
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should be noted that comparisons of theory with experiment for chordwise pressure distributions show
the clear superiority of Williams' theory and LTRAN2 over classical theory. See Williams 111-5.

The point of view taken here is that of the aeroelastician or dynamicist and the questions pursued
are correspondingly posed. Before beginning it will be helpful to make certain basic distinctions from
the dynamicist's perspective and to discuss in particular the shock and its motion which is sometimes a
source of confusion. It is a consequence of any consistent linearization of unsteady transonic small dis-
turbance aerodynamic theory in the dynamic angle of attack that a concentrated force (sometimes called a
shock doublet) will appear at the location of the steady state shockIII

-
4,III

-5
. The strength of this

force is equal to the steady state shock pressure jump and its width is proportional to the dynamic angle
of attack. By contrast elsewhere on the airfoil chord (away from the shock doublet whose center is at
the steady state shock location) the pressure magnitudes (in a transonic linear theory) are proportional
to the dynamic angle of attack and become smaller in proportion as the dynamic angle of attack is smaller.
Of course this latter behavior is also true in classical theory as well. The most important (though not
the only) distinction between classical, linear theory and transonic, linear theory is the presence of
the shock and its motion.

The behavior described above is also seen in a nonlinear dynamic theory as well, when the dynamic
angle of attack becomes small. Consider Fig. 111-2 which was obtained using LTRAN2. It shows the chord-
wise differential (lower surface minus upper) pressure distribution for a NACA64AOo airfoil at
% = .8b for several angles of attack. Here, for simplicity, the reduced frequency is set to zero so
there is no distinction (numerically) between steady and dynamic angle of attack. As may be seen for
small angles of attack, say i = .1250, .250, the pressure distribution has a shock doublet centered at
the mean (angle of attack) shock location, xs/c = .S84. The width of the shock doublet is indicated by
the vertical lines, the forward one is at the lower surface shock location and the rearward one at the
upper surface shock location. The shock doublet width is proportional to t for the smaller x; however
as n increases to 10 the lower surface shock disappears while the upper surface shock moves to the 'railing
edge and remains there. Also for the smaller a the shock doublet magnitude is essentially equal :he
pressure jump through the shock at a = 00, i.e., .43. Away from the shock doublet, the pressures "e
proportional to a for small a. Finally note a matter of practical importance. For small t as t'

,  
ock

doublet width narrows, any finite difference scheme nonlinear in -x will have a resolution probh
a - o. By contrast a method a priori linearized in -x avoids this difficult), as it computes the s.. ck
motion explicity, e.g., see Williams

i II-4
,
II I-5

We now turn to the five major issues which are listed below. These issues are first addressed for
one airfoil, NACA64AO06, at one Mach number, .86, which is pitching about its leading edge. Subsequently
other Mach numbers are considered. For a more complete account of the present work, including a study of
the MRB-A3 supercritical airfoil, see Ref. 111-11. The present calculations were carried out using a grid
mesh of 113 x 97.

NACA64AO06 AIRFOIL AT M_ = .86 PITCHING

ABOUT ITS LEADING EDGE

The following principal issues were studiedIll

* EFFECT OF DYNAMIC ANGLE OF ATTACK @ VARIOUS REDUCED FREQUENCIES
ON DYNAMIC FORCES AND SHOCK MOTION

* BOUNDARY FOR LINEAR/NONLINEAR BEHAVIOR

* EFFECT OF REDUCED FREQUENCY AND DYNAMIC AMlPLITUDE ON AERODYNAMIC
TRANSFER FUNCTIONS

* EFFECT OF DYNAMIC ANGLE OF ATTACK ON STEADY STATE FORCES AND
SHOCK DISPLACEMENT

# EFFECT OF STEADY STATE ANGLE OF ATTACK ON DYNAMIC FORCES AND
SHOCK MOTION

* EFFECT OF DYNAMIC ANGLE OF ATTACK AT VARIOUS REDUCED FREQUENCIES ON DYNAMIC FORCES
AND SHOCK MOTION

It is desired to assess at what dynamic amplitude nonlinear effects become important and to determine
the relative linear vs. nonlinear behavior of lift, pitching moment and shock motion. Note that the
total lift (moment, shock motion) is characterized by CL = CL + C where C is defined to be the lift

L o L I Lo
due to co and C that due to a1 for a given o" In classical linear theory (but not transonic linear

theory) CL is independent of a 0

In Figs. 111-3 and 111-4 lift, pitching moment and shock displacement amplitudes are shown as a
function of dynamic amplitude, a1, for reduced frequencies of k = 0, and .2. Lift and moment coeffi-
cient have their usual definitions and the moment is about the mid-chord. The shock displacement is
normalized by the airfoil chord. For k # 0 phases are also presented for lift and pitching moment. The
shock motion phase was also computed, however it tended to be less accurately determinedlll-ll. Since
it is not needed for our present purposes, it is not shown.

It is seen that lift tends to remain linear to higher dynamic amplitudes than moment which in turn
tends to remain linear to higher amplitudes than shock motion. Moreover the larger the reduced frequency
the greater the range of linear behavior. Phase information generally, though not universally, is a more
sensitive indicator of departure from linearity than lift, moment or shock amplitude information.
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9 BOUNDARY FOR LINEAR/NONLINEAR BEHAVIOR

It is highly desirable to provide a criterion by which the aeroelastician may assess when a linear
dynamical theory may be used.

Fig. 11-5 has been constructed from Figs. 111-3 and other similar results II-l l by identifying the
k,aI combinations for which the pitching moment deviates by 5% in amplitude or phase from linearity. As
expected at higher k, the pitching moment remains linear to larger aI.

Although Fig. I1-5 provides very useful information, it requires a nonlinear dynamical theory to
construct it. The question arises, is there a similar, but perhaps more conservative, criterion which
may be used with a linear dynamical theory. The answer is provided by the shock motion. In Fig. 111-6
a similar boundary to that shown in Fig. III-5 is constructed (again from the information provided by
Figs. III-3 and 111-4) based upon shock motion rather than pitching moment. It is observed in Figs 111-3
and III-4 that for shock displacement amplitudes of less than 5% the shock motion (as well as lift and
pitching moment) behave in a linear fashion. Hence a 5% shock motion boundary is shown in Fig. 111-6.
Note that this boundary could be constructed from a linear dynamical theory. A second boundary (less
conservative) based upon the first detectable deviation of shock motion from linearity is also shown.
Finally, the boundary from Figs. III-S is shown for reference. These results ate rnnsistent with those
of Ballhaus and Goorjianll-l,III- 2 who also suggested that shock motions of less than 5% chord correspond
to linear behavior.

Thus it is concluded that a simple criterion for departure from nonlinearity based upon shock motion
may be used. It can be evaluated by a linear dynamical theory in principle (which enhances its practical
utility), although the present results were obtained using a nonlinear, dynamical theory.

9 EFFECT OF REDUCED FREQUENCY AND DYNAMIC AMPLITUDE ON AERODYNAMIC
TRANSFER FUNCTIONS

We wish to determine when linear aerodynamic transfer functions are adequate and, when they are not,
provide information for characterizing nonlinear aerodynamic transfer (describing) functions. To fully
accomplish this purpose requires aeroelastic studies using the present (or similar) aerodynamic data.
Here only the aerodynamic aspects are considered.

The aerodynamic transfer functions CL1 /al, CM /al, Ax. /aI are plotted in Figs. 111-7 - 111-9 vs.

k for a1 = .25, .5 and 1. As expected for k - .3, the aerodynamic transfer functions are independent of
a1 , but for k * 0 they become discernible functions of al.

For k > .2, linear aerodynamic transfer functions may be used with good accuracy. For k - 0 aero-
dynamic describing functions may be constructed and may be required in aeroelastic anslyses.

* EFFECT OF DYNAMIC ANGLE OF ATTACK ON MEAN, STEADY STATE FORCES AND
SHOCK DISPLACEMENT

Tentatively it is concluded that the effect of dynamic angle of attack on mean, steady state forces
and shock displacement is small. For more detailed discussion of this issue, see Ref. 111-11.

0 EFFECT OF STEADY STATE ANGLE OF ATTACK ON DYNAMIC FORCES AND SHOCK MOTION

Next consider the effect of various steady flow fields on dynamic aerodynamic forces. From a dynam-
ics point of view, changing steady state angle of attack, ao , is in many ways analogous to changing the
airfoil profile or flow Mach number.

Fig. III-10 displays amplitude and phase of the dynamic lift, moment and shock motions vs. ao for one
reduced frequency, .2, and one dynamic angle of attacka = .5

o
. a0 = .25 - .5 is a rough boundary be-

tween modest and substantial effects. Clearly the effect of mean angle of attack, ao, on the dynamic aero-
dynamic forces can be substantial, comparable to the effect of airfoil profile or Mach number. This, of
course, does not mean, necessarily, that there are nonlinear dnamic effects. It does suggest that the
characterization of the steady flow about the airfoil is important in assessing its dynamic aerodynamic
forces, be the latter linear or nonlinear in a1.

* MACH NUMBER TRENDS

Mach number is one of the most important parameters in transonic flow. Here its effects are studied
systematically for the NACA64AO06 airfoil. We note that a similarity rule holds for low frequency, tran-
sonic flow which gives the following results for any family of airfoils,

C = C (x/c,s; K, v, a/,)

where C is a universal function of its arguments and

2 1/2
( -( M.) , 2

(y+l) M2, B 2tlJc

K7
K 83 M 2i

T thickness ratio of airfoil

a angle of attack



Hence the results for this airfoil may be used to obtain results for ary other airfoil of the 'amV talll iI
in particular, the 64A010.

9 FLOW AT ZERO ANGLE OF ATTACK

It is instructive to consider first the flow over the airfoil at zero angle of attack. Ii part r, I.,
in Fig. tll-llab,c the shock position, the maximum local Mach number (which occur, 'lighti, ahead of th -
shock), and the shock strength (pressure jump across the shock) are shown as a funct lou of freestr-ars
Mach number. These are determined approximatel 1Y Ut consistently, by tsing the foilow ug dtflllllll-.

The shock is located where the local Mach number is unity.
The pressure jump is from the pressure maximum tust ahead of the shock
to the pressure at the first subsonic mesh point behind the shock.

Note that the critical Mach number where the shock first appears is M = .82). i'e htock p [,'it lou at
M= .84 is x = .48 and it increases moirotonically with M., reaching the trailing edge at M~

s  
Ie

0

shall call the latter the supercritical Mach number. As we shall see M
c 

and S s c bound the essentially
transonic Mach number range for this airfoil.

Also shown for reference are results from the full potential theory method of Baier, Gar ra di an and
Korn

I II-9 
as obtained by Bland

i
l

1- 11
. Relative to L.TRAN2, these results give a higher maximum local Ma1

number, a smaller pressure jump and a more forward shock location.

a FLOW AT ANGLE OF ATTACK

In Fig. III-12a,b,c the lift, pitching moment (about midchord) and shock displaceme1t (of the upper
surface shock) are presented vs. angle of attack, for steadY' flow, k 0. Note the behavior of N = .88,
.9 is nonlinear at much lower angles of attack than for M = .86, .92. For . - .8(, or . the behavior
is linear to even larger angles of attack. Also note that the values of Cl I CM and ..xs art much larger

for MI = .88, .90. indeed it is probably that at these Mach numbers even the nonlinear transonic small
disturbance theory is inadequate except possibly at very small angle:; of attack.

In Fig. IIl-13a,b,c the corresponding differential pressure distributions are shown for NI = .8o,
.88, .92. See Ref. 111-11 for M. .8, .84, .9. The angle of attack was held constant at .256. This is
slightly outside the linear range at NI .88 and well outside it as , = .9; for other NI the behavior is
linear at i = .25

°
.

To avoid confusion in the subsequent discussion, let us define the following:

AC juttp across the shock - pressure jump across the shock at
p

a = 00 -- This is the pressure difference from ahead of the
s~ock to behind the shock on the same surface (upper or lower).

AC - differential pressure -- This is the pressure difference
between the lower surface and the tipper surface. It is zero
for a. = 00, of course, when the airfoil profile is symetric.

Linear transonic theory says the differential pressure, AC, near the shock for any xo should lie
equal in magnitude to the pressure jump across th- shock at ,o = 0. Note that linear transonic theory
gives a reasonable value for the peak level of , C I in the vicinity of the shock even for M.= .88 (tand .91.
However at the latter Mach number, the shock dispyacement appears too large. See Fig. 111- 13.

Also shown in Fig. 1II-13 is the differential pressure obtained using the supersonic Mach number ii1st
ahead of the shock and invoking classical supersonic theory ia local litieari:ation. F or ,i = .92 rea-
sonable results are obtained ahead of the shock, which is at the trailing edge, and hence everywhere on
the airfoil except near the leading edge. For lower Mach numbers only a rough estimate is given 1,y this
approximation for %C,1 ahead of the shock. For M 1 .92 local linearization is a useful tool, i.e., once
the shock has reached the trailing edge. See subsequent discussion on this point also.

a LINEAR/NONLINEAR BEIIAVIOR

Using results such as those shown in Fig. 111-12 and invoking the Si. shock displacement criterion.
a linear/nonlinear boundary may be constructed. Of course, as tire shock reaches very near the triling
edge, the 5% criterion would need to be modified. Results are shown irr Fig. 111-14 for k = 0 and .2.
Note that for steady flow (k 0) the angle of attack must be very small when Ni = .88 and .9 for linea,
behavior to occur. ilowever as we have seen before, the 5% shoc0 displacement criterion is conservat ivc.
That is lift and moment tend to remain linear in a to higher x than this criterion would suggest. Never-
theless the trend should not change using any other reasonable criterion. By contrast for k = ." the
linear region is much enlarged. For M, , M or M. > Msc the linear region is for ill pr 'atical purpo'es
unbounded. In practice, in this region, other physical effects, e.g., viscosity, are likely to come Into
play before inviscid, st..3ll disturbance, transonic theory nonlinearities become important.

One very interesting and perhaps surprising result is that at M = .88 and .9 for k .2 a mean. steady
offset in CL ' CM and Ax is obtained as well as the usual harmonic resultll

- 11
. Ilowever, the harmonic

component is linear in ihe range shown in Fig. 111-14 despite this stead' component. That is, th-e "-
criterion is applied to the harmonic component of shock displacement.

Of course, this mean, steady component is not explainable by any strictly linear theory. Whether it
is an artifact of LTRAN2 or is physically meaningful is a reasonable question. The authors are inc. ined
toward the latter view, but the question deserves fiurther stud'y. If these results are accepted, to ise

the language of the dynamicist, the flow apparently bifurcates at some Mach nimbers. Albeit tie ne%

&W N



equilibrium states exist only over a small range of Mach number.

It is interesting to speculate further as to whether such possible bifurcations can be related to
such qualitative physical phenomena as buffet or shock induced (as contrasted with natural) separation.
However much further stud, is required to address such issues. See Ref. 1Il-l for the relevant numerical
results and further discussion.

0 AERODYNAMIC TRANSFER FUNCTIONS

In the linear region it is of interest to display aerodynamic transfer functions vs. Mach number.
Perhaps the most familiar of these is lift curve slope, CL /a1. Its amplitude is shown in Fig. Ill-lSa

from LTRAN" for k = 0. Also shown are results from full potential theory, classical subsonic theory and
local linearization. The latter is shown for M_ M

s
c, i.e., the shock is at the trailing edge. It uses

the local trailing edge supersonic Mach number in classical (supersonic) theory. One corcludes that for
M MC . classical subsonic theory gives reasonable results, and for M , Msc local linearization gives
reasonable results. For M': M - M

sc
, LTRAN2 gives markedly different results although it likely fails

for M - .88, .90. Note the difference between transonic small disturbance theory (LTRAN2) which falls
well off scale at M = .88 and .9 and full potential theory (Bauer, ;arabedian and Korn).

In Fig. Ill-ISb results are shown for k = .2. For reference the I.TRAN2 results for k = 0 are also
shown. Again it is seen that the classic,' subsonic theory and local linearization theory give reasonable
results (better than for k = 0) for M" " Mc and M Msc respectively. Moreover LTRAN2 appears to give
reasonable results over the entire Mach number range though there is no better theory to validate it.
Note that from M = .9 to .92 there is a somewhat abrupt change. This is probably associated with the
change from a flow with a mean, stead) offset to one which behaves very much like classical flow with a
local (trailing edge) s,'personic Macb number.

In Fig. 11-1Sc the phase of the lift curve slope is shown. Perhaps surprisingly, classical subsonic
theory and local linearization do rather well. Note the abrupt change in phase as the shock reaches the
trailing edge. Recall the corresponding variation of lift amplitudes in Fig. Ill-1Sb.

Similar results (not shown) were obtained for pitching moment.

CONCLUS IONS

The specific conclusions to be drawn from this inviscid transonic study are:

* For M " Mc, i.e., where no shock exists, the aerodynamic for._es are linear over a substantial
range of angle of attack. This is also true for M, Msc, i.e., where the shock has moved to
the trailing edge. For Mc , M M

sc 
a boundary of linear/nonlinear behavior may be constrijited

which shows the angle of attack must lie quite small for linear behavior to occur for stea-dN flow
However the region of linear behavior increases substantialls for unstead, flow.

" In the range, M
c
, M < Msc, transonic small disturbance theory (LTRAN2) appears to fail for

steady flow for sume narrow band of M where it substantially overestimates the shock displa e
ment . The corresponding results from full pitential theory (Bauer, (;arabedian and korni appear
reasonable. It should be noted that the region of linear behavior as predicted by Bauer,
;arabediin and Korn would be substantially larger than that predicted by I.TRAN2 for steady flow

* Classical subsonic theory and local linearization are useful tools for unsteady flows provided
their limitations are recognized. Indeed in an effort to close the prediction Mach number gap,
in and near the range Mc . M_ Msc and to provide the aeroelastician with practical working
methods, it is likely that all existing methods will need to be employed in their respective
domains of validity. The use of full potential theory to establish these domains for steadN
flow (and provide conservative estimates of these domains for unsteady flow) appear, to hv a
useful approach.

" Aerodynamic transfer functions are expected to retain their uti lit v even when nonlnear d IN1.imL
effects are important. This is for several reasons including,

(1) nonlinear effects diminish with increasing frequency,

(2) at high frequencies classical linear theory is expected to be reasonahlt
accurate and indeed most inviscid theories will approach classical theer,
as the frequency becomes large

l l l -4 . 11 1 -
S,

(3) the above suggests that several theories may be used to provide a composite
aerodynamic representation in the frequency domain. For example, one might
use Bauer. (;arabedian and Kern for k = 0I, I.TRAN2 for k = .05 - .2. Williams
for k = .2 - 1.0 and classical theory (which Williams' theory sm oothly
approaches) for k 1. 0.

* No transonic meth ,d can he expected to give usefuI information to the aeroelast ici an unless

the mean steady flow it predicts and uses is accurate. Hence it is highly desirable to he
able to input directly the best steady flow information which is available including that
from experiment. The latter would include implicitly viscosity effects on the mean steady
flow; in particular it would place the mean shock in the correct position.

The reader may wish to consult the lucid survey article by 1i ideman and Seebass to provide a
context in which to evaluate the present results ind concltsions.
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CONCWDING REMRXS

Here we emphasize some of the broad conclusions to be drawn from the discussion in this paper.

6 A shear flow model has been shown to be extraordinarily successful in accounting
for the effect of a boundary layer over a wavy wall (including the transonic
range). It also predicts very well the boundary layer effect on a fluttering
plate (tht dynamic, aeroelastic counterpart of the static, aerodynamic wavy
wall problem). On theoretical grounds and also based upon limited experimental
evidence, the shear flow model is expected to be less siccessful for lifting
airfoils. However it still appears to give qualitatively correct results. It
is noted that for the lifting problem there are no experimental data comparable
to the definitive sets available for the wavy wall and plate flutter problems

a A simple separated flow model based upon a dynamic perturbation about a known
steady flow with a fixed separation point shows considerable promise in pre-
dicting measured unsteady aerodynamic force, and flutter data. The theory
includes the effects of compressibility, but in its present form is not a
transonic model per se.

0 A boundary demarcating linear from nonlinear behavior can be determined for
inviscid, transonic flow which provides useful guidance to the aeroelastician
in selecting analytical/experimental approaches for flutter and dynamic response
work. In its simplest form this boundary employs a criterion based upon shock
motion as a percentage of airfoil chord.

l A similarity law for low frequency transonic small disturbance theory is avail-
able which reduces the number of aerodynamic computations required and generalizes
results for one airfoil to an entire family.

* Although two-dimensional flows have been treated here, the general concepts and
approach should be useful for three-dimensional flows. In particular one ex-
pects the effect ,f three-dimensionality to increase the region of linear be-
havior and to reduce the Mach number predictability gap for transonic flows.
Fur example, the accuracies of transonic small disturbance theory, local linear-
ization and classical theory shou!d he enhanced by three-dimensional effects..

0 it should bc possible, within the framework of a linear dynamic theory about a 4
nontrivial mean flow, to account for shear layer and separation effects as

modeled in Parts I and 1I in the transonic flow regime, as discussed in Part Ill.

* Aeroelastic studies using the aerodynamic methodology employed here should be a
fruitful area of future work.
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NOTE ADDED IN PROOF:

It should be noted that the full potential result shown in Fig. Il-ISa was obtained using
a non-conservative finite difference scheme. More recent full potential results obtained using
a conservative finite difference scheme are essentially identical to those of transonic small
disturbance theory using a conservative finite difference scheme (I.TRAN2). Hence the differences
shown in Fig. Il-15a should be attributed to the distinction between conservative and non-conser-
vative finite differences and not to the distinction between small disturbance and full potential
theory. To the extent the non-conservative finite difference method may be said to have some
form of numerical (as opposed to physical) viscosity, the differences may be attributed to the
qualitative distinction between inviscid and viscous flow.
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OSCILLATING SUPERCRITICAL AIRFOILS IN THE TRANSONIC REGIME WITH VISCOUS INTERACTIONS

D. P. Rizzetta, Specialist Engineer, and
H. Yoshihara, Engineering Manager
Boeing Military Airplane Company

P. O. Box 3999 M/S 41-18
Seattle, Washington 98124

SUMMARY
A method is presented for computing the unsteady transonic flowfield about thick supercritical
airfoils in the small disturbance limit. In order to compensate for the limitations of the small
disturbance assumption and also to account for the aft decambering effect of viscous displacement, the
airfoil geometry is modified such that the steady mean experimental pressure distribution is
recovered. In addition, effects of the unsteady shock-boundary layer interaction are simulated by
placing a moving wedge-nosed ramp at the base of the shock to produce quasi-statically the reduced
shock pressure rise which is observed experimentally in the steady case. As a computational example,
a solution for the pitching oscillation of an NLR 7301 airfoil (NASA Ames model) at M = 0.75 is
computed. Comparison with experimental data indicates that even for relatively thick airfoils
reasonable unsteady surface pressure distributions may be obtained using this procedure.

1. INTRODUCTION

Solutions of planar inviscid unsteady transonic flow fields about oscillating airfoils are commonly
obtained by time integration of the differential equation governing the velocity potential function.
This method is particularly attractive because it permits the treatment of nonlinear flow phenomena
including irregular shock wave motion. Development of the LTRAN2 code by Ballhaus and Goorjianl has
made available an efficient time-implicit finite difference algorithm for obtaining solutions to the
low-frequency small disturbance transonic potential equation. This code is currently in extensive use
for computing unsteady transonic flows over arbitrary thin airfoils and has evolved as a useful tool
for performing aeroelastic calculations and flutter analysis.

Unlike more conventional sections, the flow field about a thick supercritical airfoil is not readily
computed using an inviscid small perturbation analysis. In this case, not only are the small
disturbance assumptions violated, but viscous effects tend to play a significant role in determining
the resultant surface pressure distribution. While a more exact set of governing equations may be
employed for the flow field solution, the computational effort involved is prohibitive for practical
aeroelastic applications. If the primary purpose of a calculation is to establish with reasonable
accuracy the unsteady surface pressure distribution, this may be obtained in an efficient manner using
a purely inviscid small disturbance calculation technique which is suitably modified to account for
the effects of thickness, viscous displacement, and unsteady shock-boundary layer interaction. It is
the intent here to describe such a calculation and to provide a computational example for comparison
with experiment.

2. GOVERNING EQUATION

If x and y are streamwise and normal Cartesian coordinates respectively normalized by the airfoil
chord c, and t is the time nondimensionalized by the inverse of the circular oscillation frequencyW,
then the small disturbance equation to be considered is:

kM~~~~~ +" IF~ + 4 ',.(
Here I is the perturbation velocity potential function normalized by cU where U is the freestream
velocity, M the freestream Mach number, V the specific heat ratio, and V = WCIU is the reduced
frequency. The corresponding local instantaneous pressure coefficient is then given by

Cp = - a ( + k t).

For an airfoil surface defined by yt ft (xt)the condition of flow tangency becomes

+ = f ± 4 1.Ct (3)

where Eq. (3) is evaluated on y = 0 . Across the trailing vortex wake defined by y z 0 for x >1, we
impose the contact jump conditions

+[ -I - - ... ...... (5

where the brackets denote the jump in the enclosed quantity from above to below the vortex heP. At
the outer boundaries the followinq are applied:



= , . (7)
S =0(8)

Finally, description of the problem is completed by the initial conditions

c (x,y 0o- 9 (xy), t(x,y,o) = VN(x,y) (9)

where g and h are prescribed functions.

For the case of steady flow, a quasi-inverse problem is defined by replacing Eq. (3) with

(10)

Equation (1) -ay then be integrated in time to achieve the steady state and the resulting airfoil
slopes can be extracted. Since the design calculation is performed only downstream of the leading
edge region, the question of uniqueness of the solution does not arise.

Equation (1) and its associated boundary conditions is similar to that considered by Ballhaus and
Goorjian in the LTRAN2 code which was developed to treat only low frequency unsteady disturbances.
The formulation adopted here includes higher order time derivatives of the velocity potential in the
governing equation and unsteady airfoil surface and wake conditions. Solutions to this problem have
been obtained with the code ExTRAN2 which results from a simple modification of the original LTRAN2.
The ExTRAN2 code employs a first order accurate (in time) noniterative alternating direction implicit
algorithm to advance the solution for 4, from one time step to the next at each grid point in the
computational flow field. Detail$ of the algorithm may be found in Reference 3. A number of results
generated by the ExTRAN2 code 2,3 have indicated that it is both stable and reliable. Furthermore,
the additional terms in the potential equation and boundary conditions were found to be important for
oscillations of moderate frequency

2
,
3
.

3. VISCOUS MODELING

The significant consequences of the viscous displacement on a supercritical airfoil are two fold. The
primary effect is the shock-boundary layer interaction whereby a "wedging" displacement of the
boundary layer causes a reduced shock pressure rs and an upstream displacement of the shock, both
relative to the inviscid case. [r steady flows, a simple procedure has been developed for modeling
shock-boundary layer interaction', . A wedge-nosed ramp is placed at the base of the shock in an
inviscid calculation in order to produce the experimentally observed reduced shock pressure rise and
hence a more acceptable shock location. More recently", this procedure has been implemented in an
unsteady calculation to produce the reduced shock pressure rise in a quasi-static fashion, thus
accounting for the unsteady shock-boundary layer interaction.

The second important viscous interaction is the aft decambering which arises due to the difference of
the displacement thicknesses on the two sides of the airfoil. In a steady case the aft displacement
ramps can be determined if suitable experimental pressure distributions are on hand. This is
accomplished by prescribing in a finite difference inviscid calculation the measured pressures as
boundary conditions aft of the leading edge region. Elsewhere the geometric slopes are prescribed.
Such a calculation then yields the required aft ramps which in the present case of thp thick
supercritical airfoil would be composed, r.,t only of the viscous displacement layers, but of the aft
"compensation" ramps offsetting the consequences of the small disturbance approximation.

In the oscillating case, the aft pressures are closely invariant to the angle of attack. Thus in the
present unsteady case, the above steady ramps evolved at the mean incidence are frozen onto the
airfoil.

In addition, because small disturbance assumptions are violated near the leading edge of blunt
airfoils, the upper and lower surface slopes in this region are adjusted to provide better agreement
with experiment at the mean angle of attack.

The above procedure was applied to an NLR 7301 airfoil at M = 0.75 and 0. = 0.37. The original
airfoil geometry shown in Figure 1 corresponds to that of a NASA-Ames test model

6 
which is

approximately 16.8% thick. Figure 2 indicates a comparison between the initial and modified value of
the airfoil surface slopes, where the original result was obtained by a cubic spline fit to the
coordinates of the Ames test model.

A comparison of numerical results at the steady mean flow condition with the experiment of Davis
7 

is
presented in Figure 3. Here the unmodified solution includes slope alterations near the loading edge,
but not those resulting from the design calculation. With the aft displacement ramps and the shock
wedge, a reasonably good agreement is obtained for the steady mean flow.



Unsteady effects of the shock boundary-layer interaction as described above are simulated by placing a
wedge-nosed ramp at the base of the moving shock in a quasi-steady fashion. lhis technique was
previously implemented in steady calculations to produce the experimentally observed reduced post
shock pressure rise

4
,
5
. A simple modification for extending this simulation to unsteady flows is

found in Reference 2.

For the results presented here, we have adopted the following ramp geometry which is depicted
schematically in Figure 4. The leading edge of the ramp is located ahead of the sonic point at a
distance equal to 2% of the chord. This offset is commonly used in steady calculations in order to
properly influence the numerical shock profile which typical has a width of three mesh intervals.
Preceding the ramp leading edge is a 2% chord cusped-nose precursor in which the slope varies linear
from zero to the ramp angle, e . The function of the precursor is to moderate the impact of the
sudden change in slope experienced by an isolated mesh point as the nose of the ramp moves across the
computational mesh during corresponding unsteady shock motion. Following the precursor is the main
ramp body with a length of 5% chord which varies the slope quadratically from e at the nose to zero
at the downstream end.

The value of 9 is taken as that for maximum turning for an attached oblique shock and may be derived
from the jump conditions of the low frequency (or steady) form of Eq. 1. In the course of the time
integration of Eq. 1, e and the location of the sonic point are obtained from the solution at
time t . These two parameters completely define the ramp geometry which is then used to advance the
solution to the next time step, t + &t . Thus the angle and location of the ramp are free to
adjust to unsteady shock wave motion in ,znner much like the Physical boundary layer. It should be
noted that the length of the ramp and amcunt of offset will vary in accordance with the nature of a
particular solution, as well as with the computational mesh spacing.

4. RESULTS

Results presented in this section were generated on a 101 X 97 Cartesian grid defined by -2001SX '
200, -397.8 f ! 397.8, with 39 points lying on the airfoil surface. A smooth nonuniform
computational mesh which is symmetric about y = 0 was employed. Minimum grid spacings were taken
asdx.,, = 0.02 near the leading edge andhy,. = 0.01 at y = 0. The initial profile is given by the
steady state solution at the mean angle of attack, which is shown in Figure 3.

An unsteady solution was obtained for the angle of attack prescribed as K= 0.370 + 0.5oritt
and K = 0.6, which duplicates the test conditions of Davis

7
. A time step was selected as dt = f

0.01745, corresponding to 10 of oscillation per time step at the reduced frequency. The choice of a
very small time step was based solely upon accuracy considerations rather than for stability
requirements. After three periods of oscillation, the solution was found to achieve a stationary
state. This computation required approximately 5 minutes of central processing time on a CDC Cyber

175 computer.

In Figure 5 we first compare the calculated pressure distributions at quarter cycle intervals with the
measured results of Davis

7
, who obtained measurements only on the upper surface. The agreement seen

here can be seen in more detail in Figures 6 and 7 where the amplitude and phase of the first harmonic
of the pressure variations are plotted. It is to be noted here that the amplitude of the unsteady
pressure variation of Figure 6 is small compared to the mean pressure values.

Finally, in Figure 8 we show the calculated lift and moment coefficients over the pitching cycle. The

latter is referenced to the center of oscillation at X = 0.4.

5. CONCLUSIONS

A method has hmnn pr-;,,ted for analyzing the unsteady flow over a thick supercritical airfoil
oscillating in transorl 'ow. The method utilizes an efficient method for time integrating the small
disturlance Pontenfil

i 
.qin. 'imitations of this simplifying assumption as well as viscous effects

are then overcnrmr hv qeithbi gometric modifications of the airfoil following a design calculation.
In addition, the jsreadv shock-boundary layer interaction has been simulated using a simple
computational artifice. The method is predicated on the use of steady experimental results to tailor
the modellinq of the displacement ramps to be used for subsequent unsteady analyses. A solution has
been compared with experimental data and was shown to produce reasonable agreement which is acceptable
for flutter analysis and aeroelastic applications.
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RESUME

Plusjeurs m~thodes de calcul des couches lirnites turbulentes instationnaires ont &t6 mises au
point et 6tudi~es en utilisant des niveaux de fermeture diff~rents, Les plus complexes mettent en jeu
un syst~me d'6quations de transport pour les composantes de l'6nergie cin~tique de turbulence, son taux
de dissipation et la force de cisaillement turbulente. Lea plus simples consistent & r~soudre les 6qua-
tions globales de la couche limite. Pour certaines applications, une version ljn~aris~e de cette dernii~re
m~thode a 6t d~veloppde. L'application de ces techniques et leurs limitations aunt discut~es I laide de
comparaisons A des r~sultats exp~rimentaux.

Le probl~ise de formation de singularit~s dana les calculs eat abord6 par l'analyse des propri~tis
des 6quations &!obales. Le recours aux m~thodes inverses eat 6galement discut&.

SUMM4ARY

Several unsteady turbulent boundary layer prediction methods have been studied by using various
levels of closure. The most complex methods are constituted by a set of transport equations for the com-
ponents of the turbulence kinetic energy, its dissipation rate and the turbulent shear stress. The simplest
methods consist in solving the global boundary layer equations. For certain applications, a linearized
version of this latter method has been developed. The application of these techniques and their limitations
are discussed through comparisons with experimental data.

The question of occurence of singularities in the calculations is tackled by analyzing the pro-
perties of the global equations. The recourse to inverse methods is also discussed.
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1. INTRODUCTION

Nous dvons abordd le calcul des couches limites turbulent~s, et plus sp~cifiquement ici en 6coir-
lement instat ionnaire, en adoptant deux points de vue aux exigences souvent tres gloign~es. Le premier
consiste A essayer de pr~dire aussi finernent que possible lea caract~ristiques de ldcoulement moyen et
sussi quelques unes de la turbulence. Le second eat beaucoup plus pratique puisqu'il vise A fournir des
m~thodes trZgs rapides et commnodes, capables cependant de rendre compte assez bien des effets les plus im-
portants.

Nous avona ainsi k6~ conduits mettre en oeuvre deux classes de m~thodes qui ne s'opr~sent pas
mais qui sont plut6t compl~mentaires. Dans ls premilre, on r~sout les 6quations locales de la couche li-
mite A l'aide de mod~les de turbulence s'appuyant sur des techniques modernes mettant en jeu des 6quations
de transport pour certaines grandeurs caract~risticues de Ia couche limite. A l'aide de comparaisons a
1'exp~rience, nous analyserons donc les qualit~s el: d~fauts de ces m~thodes en insistant notamnent sur lea
probl~mes soulev~s par Le caractire instationnaire de 1'6coulement.

D'autre part, nous avona d~velopp~k des m~thodes qui reposent sur la r~solution d'6quati-ons int-
grales de couche limite. 11 eat clair que ces m~tliodes ne peuvent pas d~crire aussi pr~cis~ment que les
pr~c~dentes lea diff~rents aspects de 1'gcoulemenc mais leurs performances tr~s intdressantes nous, ont
amenC- A essayer de cerner leur domaine de validit6 en lea comparant A 1'expgrience et aussi aux m~thodes
prdcdernent 6voquies.

Erifin, nous aborderons le probl~me de la formation de singularit~s dana le caicul de couche ii-
mite instationnaire. Bien connue en stationnair? depuis lea travaux de Goldstein, cette question n's pas
encore requ de rdponae aussi claire en instationnaire. Nous verrona coimment on peut essayer d'apporter
quelques 616ments d'information en analysant les propri6t~s des 6quations globales de la couche limite.

2. METHODES DE CALCUL MISES EN OEUVRE

2.1. Rtsolut ion des e~gations locales -Mod~les de turbulerce

Nous abordons ici Is deacription d'une m~thode de champ destinae au traitement gendral des couches
limites turbulentes hilimensionnelles instationnaires en Ecoultent incompressible. La m~thode propos~e
conduit A la resolution de syst~mes d'6quations locales comportant, en plus des 6quations de continuit6 et
de quantit6 de mouvement, les 6quationxa de transport d~e certaines grandeurs turbulentes. On troUVera dana
les r~f~rences /I/! et /3/ les 616ments pour leur d~rivation A partir des 6qu,'tion1s g~n~rales de Navier
Stokes. Elles sont regroup~es plus loin :paragraphe 2.1.5.. Toutes lea variables y sont di~finies comme
moyennes d'ensemble.

Diverses hypothgses permettant de fermer le probl~me en exprimant le frottemeit turbulent ont ,et6
analysies et leur validitE contr6t~ie par une COnfrcntation \'eXP6rience. 11 eat k souligner que malgre
la complexitg apparente de ia mod~iisation et de certains schemas de turbulence prUPOS6S, nous dispusons
IA d'un mayen de calcut. rapide et pracis, a large champ d'applications.

2.1.1. Schemas de turbulence

La r~solution des 6quations locales n~cessite l'introdtiction l'un sche4ma de turbulence permettant
d'exprimer le frottement turbulent -eCu!'/' . Les hypotheses lea pius simples de fermeturt constituent les
modgles largement utilisgs de long ueur de melange. Des schemas plus complexes introduisant lea equat ions
regisaant l'gvolution des composantes <L!V5 , .L (V'

1
) du tenseir de Reynolds, de I 'Cnergic~ cincetique

kde turbulence:

et de son taux de dissipatinT

ont 6t 6galement confront~s entre eux et i l'expgrience.

.Mod~le de lon&2eur de melan&2e

La seule composante du tenseur de Reynolds exprim~e eat -(u'v> I sous la f,)rniv

Pteat une viscosit6 turbulente calcul~e 5 partir de Ia longueur de m~.langa- par

(F2) ') t -P L

Pri~s de lai paroi, ? eat propiortionnelle .i

A I exterieur, 1/0 eat constante CS C
Cette for ~lat ion peot ktre compl iqui~v par I 'ad jnct ion de I influhence du groldicot de lri"11'

moyen local, da na ou01 d a n C.
L~e systi'me il'6quations traiti' se relUit ici aux i-quations ([I1), (F2) 1 Iv~is. Ivtrmetol.-

aux relastions (F I) et ( F2) accompagn~es de' Ia lo i ehoisic poor I a I ongueur de m
6 

lang'

On joint dana re ,sodi'le aus -qut ions dec. nt inui tp '*t 1-e quaw~f ite df- ns~uven'tut I# N~ 1-fuit 1'us dc
transport pou r ket 6 I.e frot tement trrhlint eat enrore espr ime par



(Fl) L;

oa la viscosit6 tourbillonnaire est d~duit~ des grandeurA( et

Crt
Le probl~me eat alors enti~rement d~fini par ces deux relations jointes aux iequations (Efl A (L4).

. ltod~le_3 trois_6quatlions de tran2ort1

L'expres-ion (Fl) pour le frottement turbulent est abandonn~e au profit d'un traitersent par une
equation suppl&runtaire po ur <u.'V5 . La grandeur 'D apparaissant dans les termes mod~lisds de diffusion
reste d~finie par (F'3). Le syst~me local a r~soudre est constitu6 des 6quations (El) A (E5).

. NodC-le_3 cing_621uations de trans 2 rt

2 Le.? deux sch~rnas pr6cidents utilisent one hypothise erspirique pour l'6valuation des composantes

(U.> et Zv' > ,hypoth~se de proportionnal te a

Elle eat remplac~e dans ce mod~le complet par un traitement des deux 6quations de transport sup-
pl~mentaires pour ces grandeurs turbulentes.

On trouvera dana la r~firence /3/ une discussion compl~te dcs diff~rents sch~mas utilisgs dans
les calculs de couches limites turbulentes.

2.1.2. Traitement pr~s deIa paroji

S Tous ces schemas sont 6tablis pour des valeurs 6lev~es du nombre de Reynolds turbulent
Rt= 19 . Cette hypoth~se eat mise en d~faut pr~s de la parni o6i un traitement particulier s'av~ire donc
neceasaire. La solution qui a 6t retenue consiste A ne d~buter le calcul par 6quations die transport qu'en
un point ol lea effets de la viscosit6 deviennent n6gligeables. La r~gion de paroi est trait~e par on
sch~ma die longueur de melange, modifi6 pour tenir campte des faibles norabres de Reynolds de turbulence

F eat une foniction correctrice de sous couche viaqueuse : F. 1- eXP(_ IzC
Zeat le frottement total, visqueux et turbulent. Z

L'utilisation de cette foniction proposge par Van Driest, a 6t g~niralisge sous la forme indiqu~e
par (MICHEL et al. (1969) /4/).

11 s'est av~r6 n~cessaire d'introduire cependant dans certains termes des 6quations de transport
des forict ions correctrices empiriques do nombre de Reynolds de turbulence :fonictions f4 ,fri f,, appa-
raissant dans (E4) et (E5) , fonction fy. appl~quee a 9t (R~f. /3/,/5/)

(F'3 f C

2.1 .3. Terme:s su2 2l~mentaires - Costantesajus-22 tble

Lea 6quations prnpos~es difflrent de celles d~duites des hypothises de couche limite clasaiques
par I adjonction de tenses suppl~mentaires dont l'influence a k6 contc-5l6e dana le cadre d'une confronta-
tion entre ces calculs et l'exp~rience. 11 a d~jA 6t montr6 en stationnaire /6/,/7/, que ces tenses ces-
sent dl' tre n~gligeables dans les r~gions A fort gradient de pression. oIn a observ6 ici leur importance y
compris dana des configurationj A faible gradient moyen. le r3le pr-6,_Aodrant sesible par ailleurs devoir
ktre attribu6 al tense :_. ((11/ )..<V'))j pris en corapte dana l/iquation pour I'6nergie cin~tique
de turbulence. a

Ces termes aunt report -s A Ia suite des 6quations locales cumplktes. Figurent egalement lea va-
leurs attribtieg aux constantes apparaissant (lana ces iquations. Dana l'tode des sch~mas a trois et cinq

~q t ions de trans irt et dana le cas d'une configuration exp~imentale d6crite plus loin, lea constantes
-~i = 09 O- t(t de Il'6quation pour Ia tensio:;n <tIN> ont k6 modifi~es pour obtenir on meilH

leuir accord avec lea donnges expi~rimentales. Les valeurs vc CZije Ct j sont en effet d:14riv6es de la valeor
attribu~e i la constante de mod~lisation do terme lin6aire de Ia corralation pression vitesse dana PC~-
qilat ion pour le tenseur de Reynoldis. Cette valeur cat ;' ajuster pour chaque type d 'k-oul ement turbul ent
trait6, de mettle que Ia conatante (Y, du terme (Ie diffusion, grosairement sioddlis6.

2.1.4, 'l6thode num'ri '

L~a discrldtisation adopt~e pour Ia resolution dies iequati((ns locales cat insptrdc des travaux de
PATANKAR et SPALDINC aur lea discrCetisationa die type volume fini //

Ses quIlic te tsentiel les aunt tin large domaine tie val iditil, Ia simplicit6 de misc enl otivre et

Ia r-ipidit , lIe,,'ulant (li c-araictirp non it~ratif du calcul . A cette fin ct dans Ic cas dIC systi-ica A pli-
a flora iqumt i((ns dIe transport, chanque E'quat ion Cat misc ants I a forme gl ntrale (E.) et tcsole Is6paniscnt.

1--.s if firent a t ermes appara i sant (lana (0) ant a I (rs tva liets se I (n tin sch~ma imnp I it ite., le
alcol fina ti Ila qiantit

6 
(D Ie long dv Ia normale 3 Ia paroi ac r~lutisant ciependant i ki resdiuti( it

stiplfc d'tin qyqtifltC tridliag'nal.

L~e ',l-il s'ef fectic en mi(d( dirtt lea ,Ionnii'a n cessal rca enlgiloent de's 'h i (itsl njlj

a((r t-it le dlomaine gi-ometitw, lies -odi tions ct(haqiue instant sur Ia front icr' amnt de it (C (IMaine ailia

quce I ' vollit i(n co(mplIete fie ina vi t casecter i cure.
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Les r~gians A 6coulements de retour instationnaires sont inaccessibles par ce type de calcul. On
pr~sente au paragraphe 4 d'autres m~thodes susceptibles d'aborder ces probl~mes.

2.1 .5. Equations locales
EQUATIONS LOCALES

Continuitts + E

Quantit6 de mouvement 1)L < vi >) 4 - (D'3U .- <V(E0

Dt 31 z'

Transports de

5t r ~

tL CC k

D u' ( _k (E5)

.D<U A R<u'v') LU! 2 -Bv" (P Y +- C -E)( ("

D_ <v ' <u'V> + (B<N .2P o 34! + D C <Y)'' ,& '> (F7)

Constantes

ajustees dans
chcaque configuration

Termes suppT~smentaires

Quantit6 de mouvement < LL <v >)Tasotd U.> (71Rt (v +D< U.)) -Trnsor de X,'~~'

Transport de k/t -(.> -<>) Transport de <v> (~ >D ~ -

2.2. Mlthode ingrl

2.2.1. PrinciRe

La inithode int~grale piroposee repose sir la re~solution d'un syst~e d'6quations globaics de la
couche limi te. Les 6quations de base soot les 6quations de quantit de miouvement et de continuit' integrees
entre 0= et1.

Tx e U Le? Tm
L~e calcul de In cotiche limite. en mode direct, consiste A c6terniiner I 'evoluition 81uivant X . t

des grandours caract~ristiques do Ia coi-che limite A partir do conditions initiales et dLIx lirnitt,s tn skil-

posant coninue Is distrihutionU.V . (inq inc onnisos appar aissent donc dans le syst-mo prcodvnt
Cfe , dj(14.8Sil6) , J /I 11/U e I donc n6cosisaire d'ajouter'des hyvpot hesesup

mentaires ditos de fermettaro qui soot des relations entro les caract~ristiques do In couche limit,'. c

relations de fermeture sont obten,,es apri~s 6tahl i sement et analyse de sol-t-hni; de simi lituide (ana.hgues
dans leu, esprit aux solutions stationnairos de Falkner et Skan du laminairv). On suppose quo les vit-ss



d~ficitaires oh~issent ,A une lii de similitud' mdeeLi forme~.../Lr
cette faion leS eiJUatiins lo ale dr couche lI ite q u i ot di-si-ii t- io I- Vtsi-, i i

e sei t ransfortrent en une 6quat i on di ff~rvnt eI Ile ordina ii t, pour !,A 1,111 t F'() 'i .

Side simiIi t ude peur a lors it re resol Ile en expriniant I e f routretsrit t urb,, l.-tt .I Ii d, o~tt.

turbulence :notis aviuns chotijsi urn mosd~le de longueur de me61ig- la sikit iuti 1, -ittt ~i-.it -n It
tude est une famille de pofII-dpna td u a ae t- I I.lii 1c Ut III, j-1 1" 1

F (9) Pj'~ /1
la forme de chaque prof il F-'( t Ic trl ac tetir de kil iscr G :kii Is i
propri~tes de cettv fami Ile de pr-or iis conrduit adim xit itL ds i-t -to tcit ti -lIl I-
solution des eqUdt ions globales de la co0ucti l imit,,. Ces rrnlat ins s-it

- une loi pour le rapport ~

- une loi pour le tr-ottement de pa ro i:

-une lot pour le coetticient dJe ~-Ir , 1l nt. 3  G -04

* CE - P(G) - /a 5/3t
*z t P sotit dsri t int du pirant-re G -titiunut ii uituu tup ----.-

tio ns de similitude. Ces fonct ions ont ett. ietermirw.e, point par point pitt pI uuivuts vil-ut, :t- C' t
ont et6 r-epresent~es analytiquemrent par les tormules:

D* - C - 4,2', (; - -1 2.1

P - 0,074 G. I , 09 G

Remar-quons que, par rapport aul cas sirt nonriie, II tmtOr Jil p-ri- tr.i pitsn-I M
instationnaires danis I'equat ion globair, de quaint i -tic i-t IVOIttcttt ct ltt1' i.-i
d'entrainement.

2.2.2. Extensions

La methode dont le principe vient d'kre expuusi- pouir uni tulni-V1t blttIII-IISt -t !!,- ut>-j Ito

a 6t6 etentlue aul cas d'un 6coulemeirt faittlement compressibulc ( M< j "' tiur tr .rtk,rm.kti I i, Ii ..-. ,nc
it6 6tendue au cas J'un 

6
coiilement triditnenosionnel en vu, notinut11ictu)t uirp-i iitt t :

limite sur des pales d'h6licopti'res.

Signalons atinsi qii'une version lin~aris~e de la method, .i ete mine iI p~int putt I,-, ,i
coulements piriodiques. Eile consist, a developper les equiat ions et les r-rlat iris de 1iitc~ 11i Iti I I
hamuniques. Enl supponant que les harrioniques niap~rieurs sont faibles, Ott aboutt it diutti p.iii t I tL,

d 6quat ions pour irs ctimptsantes moyennes et d' alt re part Zi ut jeu d' 
6
qtat ion, pour I ci, .inij I t - t

phases.

Final erent * nous rappel ons que les relations de fermetutre presenteecs I,< - .I s, 1i- ti .t qj' II

n existe pas ]'6ivoulement de retour. Pour ces derniers ca,, tin autre jeti de relat Ion i-sit 1 I ist- KI~

3. APPLICATIONS - COMPARAISCINS A L'EXPERIENCE

3.1. Couche limite turbulente en kcoulement Du~sL6 avec gradient de pfessionm myeq RH.or~e ~ 13,

Une couche limu te tnirbrilente soirmi ste A un ecou Ierrent esteri ur puls Is. de-, [,1, -1'.iti h, ii i

d'une veine d'essais de section rectangulaire. La tranisitioin cnn de, ln, ti. itt Itt Il V I-it 1ti tu , I-

lerteur. En aval tie la region d' tUite, Li rotatioun d'une vanne ,cr-rv li pulsar-it ii-d I'l Iinct -t n -

rist ion de la Verte de charge totale ii cir-cuit.

Un cores profil6 induit stir Ie plainther Jre li veine kill graiuhntt mni-ti Ioiugit-lttt i i-i ii

ajustable. 11 s'est av~r6 n6cessairc d
t
aspircr tine part in titi dit stipt-ritI-itt ect.it i -i- i. 11a

blocage au bord de fnite dui corps cent ral. tine serio nue aspiration I ite'r.ilIc pi v in It ,i 1- -. 11

couches Ilimites iat~rales et reOUle len effets trittimennionnrI. : I i gi a-r, t- 1,1 i I r m 7i - it rc r
plifiee ce dispositif exp~rimental.

Les mrestires tie vitense instantanec tint ete cffcctutvcs suit lkuar ttim-r Ii It tu-.i i

an~mom~trie laser dans leq risgitins aval ,Ii .ippjarii stetit pi-rit-iti-Imiat ti-t.tlsittt -it 1. 1 .,1 T

analyse statist irjie de i-en dotnniis permet tde sepiire r Iv 'i
t
s mnptiSAMir .5 r-VI-c iii, ititSiit. it si tc

tremble- des parties tiirbulenten. Dien ctimpatraisnsentre Irs, r-rsidtitis -ii, , iil -us ijl . ui t t

ration expgr-imentalc et ces iiinn6es t 6-s COTTnrlc VS-tt ptit trv i t.il ni-i-.

ILes figures I et 2 printtn li-s ivoljtir jj iris, Ioriiuraisi spit 1tr.1i '-s it Ii

valetir n rrsvcnnen- , tics amplittitis eiti-n, dvhiqiigvsi pari rapport a I-i ottss -sti tii iii . -I

seur tie leplacemient Bj et titi paramer re de- frmi H . 1rti,;s tni-thiutit - .tt it I l-to -,to it Ii t-

ploit~es tine versioir I in6;rriise Ie' la twrthtudii integriali, Iai mirthtI, iti-grili iti-1 yuttI-II- - - t -

A trin3 iqtiationn tie iranspiurt . itte uiirnic-ri, ii thurt I i- pri-visi--n t i-s ., - 1,k I i-i- 11~ lit tn

tie I 'hairitniqinte tI e j i . L at-ti r-ul tuntrrirl It- p-trim-tr- d, i-ri-. it r- 1 NtJ"' ti-t -4' ''1 1 L i I- 1 ,
mtt hour inregra Ic ref It-ti- mai I *ir , urniuTi- t I- - , ijurt- Is. i d. - I II I pi. I t I i , II- , t.. Wt

ie St t 8 . Mils I."s tet-i-, i-I.- t-s r,,tq tiwthl-i- Iuuj iI ti -tw ii- -ii t - I. I t -t

accept'illi-s tifiant'uiris.a

e in tIrn fijr I p-cip irt Ii It t- Ic l: ii itt),j l - ts Idji taul~r 1 1 t1ut 111 .ij tit I iit. it! -. hA 1



Ia millie st Iat 1tItI Irstn fiir 4les courbes d 'ampl I tilde et dt-dcp iitli'gv pir ri I I a IilL vi-
tesse exterletiro dii premier laiismiqLiit'e la vitesse au scm i do nili I-th inn1te, Pir1 It' MimeS r dliiIS

Des carateristlqia's toidamtiot.iles tn ecoulement mnstatlionalre tellIts (ilt I '',vrshit' in proil ii dm-

plitude, lecotmportenent du depiiasage de Ia vitesse pr~s die Ia paroi, slint oir rctoiirt ivdites par on

wisdele Lie tirmiture elabore.

tin trouvera ent in Stir Ia figri 5 un exersple des 6vi'Iutions dans lilt perth diiJj pit,) de fi r rt

tenient turbulent rt'duit pour trois modeles tie turbulence

1)I - i equalt ion dlSe transport,
2- Ii equations die transport aver termesI suppi~mentaires,

0) - eqiat ions tie transport.

Le's t endarites du calcul sont tonformes aux d6formationx observ es tl protl ixj' t miuntal

3.2. Exempied'apiication-de U -methode inttgra~e entr~idimensionnel

Pour IlIustrer cette mq~hode, des calculs ont 6t6 effectuis dans lesqitels la t i h I Uie t ,sr

developpe sur une pale hypotlietique d' n hl icopt~re se d6plaiant i vitesso istaintiv li'rponii illai rtnt

ai ('axe die rotation du rotor.

ticux cas de vitesse exterieure ont 6t6 etudies, en utilisant un restiltat prpu)(sim par Me vKSKIY

yAiGtY IRE'. 14/:I

* as I Lt+ bi-

A tiQc.& ,C o

C c orde tie Ia pale U' -C

* as II: !Lti< 0 7( _L +sinf4, (i...§i
a.. U. - 3

Le profi I est mince et plact 2i faiblo inc idencet. les c'ordonneos x et XY sOtit t onforidnis.

x

Un caLcul quasi-stationnaire est compari3 a Ia metllode intdgrale instattonnullre Pour Lt' dous cas

de r6partition die vi tesse ext6rieure et detix sect ions en u ne sect ion situale pros thi ro t or: (Z/4C 1 0
et une station situee en extr~mti do pale : (/f- 23,1). Les rtstltats sont pr6Sentds Piour le -tint ap

partenant au bord de fuite.

Sutles figures 8 et 9 sont trades los iPvolult ions tn ftict ion till teomps iti pirami reodo
forme H =Oj/Ojj. Le niveaui ssyen tie H est pl us failil Itdans Ie cas I quo t]ians le cas 11. ~Ix fic tour

essent lel dans cette di ffierence de comportement: est Ila val our til gradienot de vi tosse ext Prioure ;los
effets i nstat ionna ires sont d 'auitant plus sensibi es pri's die I axe du rotor, qiti Ils soot asstic i s :1 des

gradients important s. La va leur dui nombre die Reil ds jiut, tga I mint : lans Ila conf iguirat ion 1I, ,i rt'

que H est plus eleve dans Ia zotne voisine ti 1) rsoI'x iirtr trqi'' 'lst

devient tres faible et doi aussi Ite nombre te Renolds.

Le efet tridimensionnels titls A Ia ciitle limite tsitnt tibtrdi's par 1 intirmlhi a iri' de' I'inglv

entre Iaevitesse ext6rieure relat ive et Ia 1 igne (h- courant rilaive' a I pari . In I .tit do' pafle t
iants le cas 1, ret angle tiemetire tri-s vitisiti dei' nero ; ses ov,ii ls iliti)t pais ett traciels. I Iii's riS

tent faibles mi me pris diu rito)r. 11 on est pis de l'iii't tits 1,' ais 11, Slrtotiill i isiliagi dI I alxi it

rotor (Figures 6 et 7).

On notera que dans la configuratioin 1, Ii's ilitils insftii'lliiiis t qi-si1i,titiiiros tititi'ilt

ties r6stiltmts tre-s ctilslns. Dans It' seitonti as, Ie talctil qulasi-slit itoni re pricti railllI iii Ioi'tiilt tic

Ia rouche limite pottr voilsi 1t~ 3(0* cintrairemint iii caliul instai innair' ;.I pt eut1 sipl iiio pati

+ I.
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3.3. P Iay2_pA~s _mIse A un ecoylement sinysoTdal

La configuration la Plus complktcment C-tudide est celic d'une couche limite de plaque plane s,,uj
Mise 1 Un 6COUlement ext4 ieur sinusoldal. Nous comparons sur les figures 10 et 11 les resultats ob-
tenus A l'aide d'une inethode intigrale et d'une m~thode lin~aris~e aux quelques dlondes experimentales
disponibles. La comparaison porte sur l' volution en fonction du nombre de Strouhtal de 1 'amtpl itude et du
dipfiisage par rapport "i la vi tesse extC-rieure du premtier Itarnoni quo do I 'Cpaisseur 49 . Notons que le
nonibre de St rouhial n est pas le param~t re un iquel de I a solio :t le nombre de Reynolds e t I 'amplitude de
Ia fluctuation de vitesse joucot ,7galement on r3le. Les calculs ont 7te rtialises pour uine fr~'quence de

4 Hz, tine vitesse ns'venne U, de 51. rn/s et tine amplitude do 0,125 U,.'~

1t senibte que pour des nonibres dc Stroulial intermidiaires allant de I 4 5 les divers calcols se
comparent dc fai~on satisfaisante .1 lexpdricnce. t

t
ne dispersion apparait par contre pour des valeors skipe-

ricures. La difficult6 niajeure dii cilcul rdside alors dans la mod~lisation do la turbulence dons la sous-
couche visqueuse o6 se trouvent confin~s les effets instationnaires aux grands nombres do St roohfal . A
probt~me se rajoute atissi ccliii de I'interact ion entre la pulsat ion forcee et la turbulenc,,Ila fretqoott'
imposite pouvant sc? t rotver dans la gamine des frequcnces caractri st iques de la turbul once.

3.4. P1aguepldesoum~isea une_2ertur-bti on sinusoTda le (propaga tion a ci~1rit finie)

Les figures 12 et 13 miontrent tine comparaison aux exp~riences de M.HI. P'ATEL 15/. ('OS ex
riences ont Itd rdalIis, S~Sstir onle p1aqUo p1lone, semi -i nfi nie avec transition ddc loncloe 1 (1,27' nt. d ,
d' attaque . Les donnees exp.Srittentales r!sul tent de mestrs pir ancutoinetrie A fit chtoud ,tinsi qo, i<
inesures par prises de pression statique placd es ) la parol.

La putlsat ion de vi tesse exteriolire so propage dans ces expir ieices avec unto ctii ite iie

I 'amplitudP de fluctuation crolt dc plus suivant M . La virosse extorlooro se met sols 1,i ItrnI

Pate1 donne 19' in

Lief 07,71,2. ( t- 0,.2 75)

Des frtquences allant de -I 4i 12 Hz ont dtd otitl Iisdes. La plage do mesurcs vxpl rv i... n X 0.1jj

A des risultat s qui couvrent one gaineu de nombres de Stroithal de 1 ,65 4 6,65.

Differents calculs ont 
t  

r~al is~s au moven d'une metlhode int~grale, otu a 'aide dtisa vri, ti

I inearis~e . Jusqu'au ntnibre de Strioulial Ie plus 61lvvC (6,65), oin bon accord avoc I 'epote 0, I .t, 11,,,

sauf en cc qui cuncerne les dephasagos des 6pa isseurs6 CTJet e par rapport a ki vi I ust, ex~tt it-out
Ces &carts peuvent en part ie s' expl iquer par la di ffi col ti do determiner do tvls depltastigis iv-, Ti'

par I' expu~rience . Line dispersion est 4 toter cependant donis los rt
t
stil tots itheor iqties itix grittoe el itlt

dfii ntmb re de St to nalI

11 toot enf in romarquer qu'i I se pose doans cet to conf igurat ion les prob~i 'mos I',t i gin u le1,
c'OUChe I imite turbulente pour ddfinir le nombre do Strouhal of ie conliti ions int iales i-u Ii 1i'u

calcul aux foibles fruiences r~dUites.

4. SINGULARITES EN MORE DIRECT - METHODE INVERSE

4.1. Rappel_ d Esrsultats en 6coulement stationnaire

En PCrfilement bidimonsionnel statbonnairo, il a etce montre Line IV SVStktW es -ijlatIos Iiio'
tlevient singti icr ati voisinage dti point d'annulat ion dtu c,' Ificient de tT'iittmttl p'iTtrt)t .(cI siii
nit,!, o-naloIte 4? cello de GVoldstcin pouttr les equat~ions locales, se tratii (it part i, , i,.t pat I,- 1it
I ivi, dI ,,i /dc r livient inf inie . tette s ingitl aritLe pett ire i Ilustrevo .1 1 , ,1 i ot d' dIi

= 1 , - L H/J

it" *W ,; .,~ 1 1

I, t 1 I' R i) L A ) -I C ( II T 1, 'o I 't C -11I~t .'t V I Ip. II
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des equations de fluide parfait et des 6Jquations de type couclie litrnte, resolues en forte interaction unt
pu kre ddveloppdes rs~ae en presence de zones avec 6couleaents de retour /l10/. Les meihodos inverses trou-
vent aussi lout application dans les adthodes de 'design' on impose one caracrtlri s icjue de Il couche
limite et on deduit la distribution do pression qui permer de caleuler la formse de la paroi a l'aide d'un
calcul inverse de fluide parfait. Le mode inverse est encore indispensable si on cherche A contr~ier par
comparaison a l'expdrience la validit6 de relations do fermeture pour une couche limito avec ecoulersent do
ret our.

4.2. Ecoulement instationnaire

L'analyse des propri6tds des 6quat ions globales instat ionnai ros apporto un c Iai rage nouveau au
probL rse de la formiation de singularit~s dans les calculs de couche? liite en mo~de direct. (In a montr6
/11/, /12/ que le syst~nse des 6quations instationnaires poss de deus directions caractdristiquos qul, avec
une hypoth~sie simplificatrice assez mineure, s'exprimoent par:

j o,Wca(N-I) /11

o 2 e st I a d ire c t ion c a ra ct 6r is t iqoci red u it v. r / uet

Pour lo dorsaine H > 1.on t ire donm- les 'oni Iionsi'. sui ri.jtes

*Puisqo' il IOxiste toujours donsi ilrec t ins arattri st iques reel lies list inctes, le systvile est

hyperbolIique.

1 La p r e mniJZre v ale u r c ar a Cte r ist i que- ocst t Iou r s po'S i t i Ve. e~t revs to acime a sse, z vo is inev d o I
cule ost comprise ontre (),h-2 et I.

*La douxi~mo valour carittrlstique kst posit ivo pour H<HN; ci 1v est negat ive pooir H>yHC

or, enl statbonnaire, I 'inllAISe Id-s oqttiit Tilns iiii! ro 0110 Ia vaLour critiqUe H52 Hi deI (n it la
singul arite. A i t roc- lvgor .1 lotitt'ollt il' LIt'S to

1
1 iI is do fermeturo,, co point correspond d 'ai1 Lent'.1

I' inouittion u -Cit cool '(nt It' troit!tenit it t- 1ilt i-,non re -M'alit enl instat ionnai to).

(ontratirenit I,, 0.' stait 'ilmilrt-, Ii ipp~itratt 111 1tic 1it-l point H=Hc n'est gidneralement pis
singuL ier enl iistalt (ilri ro . I he inigetilt It sight' It' lIa Jous ilt' vaLtour earactdristiqle ai La Lravt-rseo
(1, ce point ae signalo scolei'eiil par nmit- int lit-t It- I 'isa

1
l stir I 'aatlnt qkland H4 devient SUplrielur .1

RC~ (Fig. I Il4 t'Otl itlIIult' - ISt tout i tall 11ct i It'e cSt I icc A la pr6sence d'&coulcamnt s Ic
rtor.

In1 intci i,-mitr, 1.i prolst-n.:. initel, N-I ti siigiilaritt' do la solution n'est done pas liv itt
po nlt HN~r . It- svst~ac poact*Itlo Is-sc-Lt i--nc t i-It-s ice. diccontinkuito qu'on peut (Prudiier analyt iqiic
merit iprt's ik'-ir rtttlarltqii qu I's t'iiia 115 5- oltill aoi f-rae (11.i-c'Onsorvative, condiitiiin nietssai re
d'oisteni.' do -oL-tiions I nibs. % .tt t, tr t-st

uIltrn s lii' , I ar c ilt' 1 ttIlt I gn Ir i.c t t - i i ni es poa tr en etl-ii t In t-sm -a. on

It-s I genc ltIl t' riot lotw ' 1, A2  t-;-'l r 'i w it' I it I1. traverst3e do laqnwiei I
It'dl i1 1 t , ct %I is'l it ti nut- I t t ' lijt I wi '.il I i li git 1r - . Po'ur t .O do S onllit io c It

. ... h i nti quttrt cu I pIII , I L a t, I i r I, ' 1 ti~ n vIt I tIt I iti w o marat c(Ttrial t -i t

;ti1it lt i~ I i x,, It's t luips - r r,-'s p,,iI el H 14e 1TIC' '-It t ' ill 'illSiit 'l iiigiil I tlt .

' 1 i t OTS--.Tt lu I raI imit. -j;t I'ls u~t 'i 'It- aiiti-il- tI- 'it' t I It.. ki l iit
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peut imaginer suivant le ciroix des donnies, deox solutions ont 6t6 &Otdiees. innts 1cs dteox cs, ini grandeur
dont I '&voiotion est imp-rsile est in direction die I '6colement do floide parfaiit IV long doorI truntir
S itMee A5'a lrtod ~ie Soit 0, cette direction, On zirontre /)0/ que si cette- fronr itr rst _oI 11rtdrI-
avec i'~aisscnr de dAp lincement '04Ti )I,ion a one condition du tangence Ie long die cete frontilre , 'est-
5-dire que is direction 

0
est donnee par

0___. .) (f9)

Si Ina frto nt i 'r e o's t c o n f ondtue .rIv 'c Ini pai r ot (tj 0" on mot LreI / 10 / q1 ' o n ob Li te, nt ci curt1 t1 lt 1
de sooffiage telie que '

Les deox merhudes inverses rolse ossetdn opsr sorit qreV 0(qJ) srrnter

foncrion die X et t , suit qie ae t-It Cn~ e 10c itn de Z et NJ

Ainsi, ort ijrote oine eqilatiOrt cvqorrrir, (E9) )i Cyin t aLI-it (Lilt)) aLI svslr-m des eqijorns de
corichIe 1imi te anis ont considZ-re qoc w (r) es[ unot i llc"Innllll

Dans clincon des cns , I'tonI VSt- des prupriet Cs do systore d',qont ions muntre qo'il s';Igit d'on pro-
hi tme rotniement lrvpcrbol1ique et pie I es di rec tions c nrnc ten st i qocs sont toojoors positives. OIn en c'Onelot
donc que pour in coo~che I imi te resoi Ie iso I eient en mode inverse, des condi tions anoX Iimi tes soot seol ement
n~cessnires 2t l'amoor et I'inrdgraition peoit krc ffecto c d'amont en aval. ll'aotre part, ont a roooltr/ que
sorvnnt la deuxiime mdtirode (44q iJimpos)) I 'existence des lignes de discontiniti est is exciore. Suivnrrt
in premi~re merhode, le caicut itre qoe les pentes des directions caractefristiqoes varient peo soivant
les valeurs do facteor die fotrxi H cc qoi devrsir limiter le risqoe de lignes de discontroorte2.

4..- Ap2212c§t12 d'ur-e m~thode inverse -:Comearai son A 1'exe ri ence

L'un des premiers objectifs d'applicatin de ces mithodes inverses n 6t') notamment de cuntr~iler
1 es relations de fermetore en instationnaire avec ticoolement de retoor en s'appoyant sor des comparaisons
A l'experience.

Les rtisoitars exptirimentnox /13/, dijA tivoqotis n paragrapie 3.1., soot constitods de sondages
dtitaillts de in cooche limire A difidrentes stations et ont comportt nornrMiOut in ditermination des
moyennes die phase de In viresse. Ainsi, on connatt de tqon pri)cise I'')volion de In cooclie (imute en
foncrim do temps et en particoiier, In di stribotioVn t)- (z

Poore atteeindere (cl ho rehe(i' i %)qat donc on peo plus simple de mfertre en oeovre In lro
iremthdines (cie a') in impo'se ~(j . 5i/= z qo i rev ientt en fa it it p resc r ire I '6vroiion

de 1'6pnisseoV dtiaemn AZt .Ieccuso t6' effecto~s en consid~rn in distrihotion
mesortie de comtoe donode I o probI')me. Cette distribution a et') reprtisent')e par on) dtiveloppe-
ment harmortique des va letirs mesorties scot le fonidamental a Cte reteno. Ces donnodes, repre cnrt~es stir In
figore ft ont t') introdoites point par point.

Sur les figure; 17 Itt I18 on compare les rdsoi tats do cal cot et de I' exptrience co oce-rotnt
les distrihotions do1 facteor de forme et de in viresse reprd senti)es a I 'aide d'one analyse? larmoniqor-. Lit
bon accord g')n')rnl est ohrenri, v crimpris dans In rttgion Si todte en aval de o 435 nmr oui npparai ssenr
ptiriod iqlxtment des coorant s de retoor. Bien qoe I 'one des carnct')ri st iqus det In coocire I imi te soi t iotro-
do ite coimse dono~e, In co:-tpnrni sun de I 'tvoluorion do fnc teor de forme n 'est pas trivial e car It's nitlit ions
die fermetrire orilisees inissent arhitraiires les valeors de deox cnractdristiqoes tie In cocot liti t -

Prtcr-isons encore que I es r')sr t ats dies ca Icrils effec to/s soivan toI mode direct ( avec a; mt iio-:r
compl;te 00f Iint

t
aris')e) montreor on bon accord josqo'a tIn station = = 435 mm. (Mais insistons stir IV firt

qo'one tentative de calcol en mode direct ;iiideltl dii point X = 435 tmr, sans renir compte de conrdi tion
aval . avait ;cliue tris rapidement pnr suite d'appitri tion de fortes irtstahilIit/s nom'riqoes.

CONCLUSIONS

On dispose d'rin ensemhie de mtliodes d~e calcul permettant, sc-it ttle descriptI itn gll-Le -It I,---
Iemt'nt par reisolut iort des i)qunr inns inte~grales , soit rote de'scriptioir fine (III ChLimp (IV Vi tesses VtMmi

certaines grandeors car-rcteri sri ies do In riirbrleic par rdsolor ion i' or jen 'Ciqtri ots ,lr~nj-t

A\ i'nide de coi;;'rrai sons dtnilIIes -i I'expilrierrce, ii ar tlrC morttrV qlie poorr Iitirete t'-.

ration sensible ptar rapport ails mirtiiies les plus simples, it fnrt faire appil Li tin svst itot !,. -

tr-insport rbont IV iriveari de complexirt) est 6levV. Si on se I imire Aux mod'.les plu> s5mph- I't 1i1-ivi
It's cpa i sselr IV C oiclie I imi te, sans etre mativa ise, It' ast pans rind ioreot pire rapport I1t4tii-I t

par tIn mith-lt irrr~gr;ile. D~' e (,tpint die vrze, In motliodr inr~gr;ile donrte Its r,/sutrlrt r-tr I t tit
tables -ompte tr'ttl '-l plls (it] gain tie temps de' cil-n . II leths, ,: tcC li-s i, t I,1,sI,-tt -it J I I lot-ItI

It's plus smples. lI It-sript ittn des prof'i Is 'It' vitt-is triseite Ites dl-luits, tiitsi s t Ir1 I

mt-It ciii pr/st'tiri'rr It's; prof iI ,l Pimpl i t ude.

Pour 1,s gran- val- irs d(in nomhr, It' St r.- i it surpi-r i-it It', ti lC' -' -'l irt Ir 1 t .~ ItII t'

me'tt irx is 'st.ir t s seo 71 I'lr it MonIrr -pit It-'s rrdIt,, ip, I r nv I -c ' ( i-it- It- tit 1 ' ; CL n r tt

tInrl.oi ts -% -rre--r t o t t' r, t on x' j iiz ' tpri, ]In phis , i- (- si I Io . -T rtIt oip-- darit I nI- I) -p

rletir-s tIre stint pi, strftis,itimt-nr o t, i q~ wis dr .p -rtr I,, to -t ii s i, is 1:t111ntrs
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analogue petit 9t aite pour les nombres de Strouhial faibles (inf~rivurs ai 1) pour lesquels on manqucV
aussi de donne drimentales.

Sign ' enc'-re qu'il serait tr~s instructif de disposer d'intonsations exp~rimtotales sur IV-
volution du co-' -nt de frottement pari~tal. Les seules indications dont on dispose actuellement penl-
vent ktre obtenue par la juesure des profils de vitesse et I hypothise que la loi do paroi etabl ie en sta-
tionnaire reste , able en instationnaire.

Grace A I'analyse des propri~t~s des 6quations globales de la couche limite, nous avons pu rnottro
en 6viden ce les conditions dans lesquelles des singularitC-s peuvent apparartre dans les calculs de couche
liinite en mo de direct. On a pu ainsi apporter un 6clairage nouveau a cette question en montrant que Iv
probI~me bidime.asionnel n'&tait quoun cas tr~s particulier d'un probleme plus gilneral. Bien quo I 'analyso'

ne soit pas identifiable & celle des 6quations locales de la couche limite, on pent raisonnablement porisor
que des difficult~s analogues peuvent exister quand on r~sout ces 6quations. En fait, l'existence dv deux
directions caract6ristiques dans le syst~me des 6quations g. ,bales eat le reflet, apres integration, de
1existenc e d'une infinit6 de directions caract~ristiques (qui sent les lignes d'6mission) dans le svstume

d es 6quat ions locales.

La mise en oeuvre du mode inverse de resolution des 6quations de couche limite permet d'6cliappee
aux singularit6s du mode direct. On ruontre donc que ces singularit~s ne remettent pas en cause l'utilisa-
tion des equations de couche limite.

Enf in, on a po contr~ler par comparaison A 1'exp~rience que des zones avec 6coulement de retour
au moins de faible 6tendue peuvent ktre correctement calculdes A laide de la m~thode int~grale.
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UE UOE +DUE mSIN (OMEGA xT) x=340.rmn
U UO + DU x SIN (OMEGA x T + DPHI)

-5 EQUATIONS

-- - -2 EQUATIONS
15----------LONG. MEL.

10'

10~~ 1% __ ______

50

0N

0 0,5 1,0 UO/UOE flU/DUE -20 -10 0 10.DPHI

Fig. 4 -Analyse harnionique de la vitesse dans la couche limite -expdrience -calculs

avec diffdrents schdmasde turbulence.

UE N/S - X=20.m
201L20.
101 1~
0,0 05 T

-Mod~le 2 30 G AS II

-ModKe 1 270

F F20. 0

T= 1,05 x z
10 C

-, C C

T 0,71
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, k T=0,36
0,001

- - T 7 0,21 Fig. 7 - Couche limite turbulente tri-
0,OOO- --- dimensionnelle instationnaire. Angle

0 5 10 15 20 y ?U limite,
3

Fig. 5 - Evoluti-n des profil!. de frot-
temnent turbulent au cours d'une p6rio-

de - expe~rience - calculs avec diffd-

rents~ schdmas de turbulence.
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Fv.6 CouchIeI limije turbuiente tri- Fiq. 3 - Couche lirnite turbulftnte tri-
dimensjonnulle instationnaire. Anqice di:mensionne11e instationnaire. Fact,-,r
Ijjsite /3 deI fon.
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1.5, dimensionnelle instationnaire. Facteur

de forme.
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~~---quasi-stationnaire

90 150 210 270 330 30 90
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Fig. 11 - Couche limite turbulente bi- 20

dimensionnelle en 6coulement oscilla-
toire -phase de l'4paisseur de d~pla- \
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--O4thode int~grale

oLEquations lin6arisdes H C xH N aH C x

Fig. 14 -Variation de la pente de la
Icaract6ristique A en fonction du
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VISCOUS F:t,'L("IS ON UNSTIADY AIR IOAI)S 01:
OS('ILLATIN(; (ONFI;URATIONS

by
W. Geissler

DFVLR - AVA Cttingen
Institut fur Aeroelastik

Bunsenstr. 10, 340(' Gdttingen, Germany

Summary

Viscous effects on small amplitude oscillating wings and bodies can be considerably influential on unsteady airloads needed
for aeroelastic investigations.

The steady and unsteady Kutta-Joukowsky condition, boundary layer displacement effects, gap flows on wings with oscillating
controls and vortex formations on rotor blade tips, on wings with highly swept leading edges and on bodies at incidence severely
influence the unsteady pressure distributions and overall forces.

Numerical calculations of unsteady airloads based on a sophisticated potential theory have been compared with carefully
measured experimental data to obtain detailed information of the viscous effects involved.
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List of symbols

x, y, z cartesian coordinates

x, r, o cylindrical coordinates

L, I reference length

its local chord

U C main flow velocity

a velocity of sound

Ma Mach number, Ma = /aC

p static pressure

p density

q O dynamic pressure of undisturbed flow, q. 1/2 p U ,

c steady pressure coefficient, c = (p - p)/ qeC
-PP

c complex unsteady pressure coefficient, C p c p 4 iC '" p/ (q a')
a angle of incidence

angle of flap deflection

ar amplitude of oscillation
t time

frequency

W * reduced frequency, W . .l/ U
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1. Introduction

Recent developments of prediction methods fc, unsteady airloads on three-dimensional oscillating wings 1I and bodies 121
take into account the exact boundary condition of the real surface of the configuration as well as the exact Bernoulli Equa-
tion within a body-fixed, oscillating frame of reference. In addition to a lifting surface theory several additional parameters
such as thickness and camber of the airfoil section, mean steady incidence, mean flap deflection and gap geometry can now
be cosiered. Comparisons with detailed experimental results enables a decision to be made about the quality and quantity
of the viscous effects involved. A further step is the intoduction of a special flow model representing for instance boundary
layer displacement thickness, separation of the free vortex layer type or even rear body separation.

In the following paper a discussion of different viscous flow phenomena is presented by drawing comparisons between theory
and experiment. The problems are closely related to aeroelastic instability investigations and are therefore limited to small
amplitude oscillations. Problems related to high amplitude oscillations of helicopter rotor blades, i.e. dynamic stall, are
not examined here. The investigations are further limited to subsonic flows, although some of the viscous phenomena ob-
served in subsonic flow have similar or even identical effects in transonic flow.

2. Potential theoretical method and the Kutta-Joukowsky condition

For the numerical solution of the potential theoretical problem a panel-type method is used, dividing the real surfaces of the
3-d wing or body into a corresponding large number of surface elements. The unknown singularity strengths are then obtained
as the solution vectors of a large linear system of algebraic equations. In the wing case, a combination of sources and dou-
blets is used. A source distribution alone would not give satisfactory results: the overall lift of the wing would then be zero
with a flow around the trailing edge of the wing. It is well known from flow observations that in a real viscous flow the fluid
particles leave the trailing edge smoothly and a singular behavior of the pressure at this station is therefore avoided. To mo-
del this viscous situation of smooth flow off the trailing edge, the Kutta-Joukowsky condition has to be taken into considera-
tion. This condition is therefore a phenomenological one which accounts for the main effect of viscosity in a non-separated
flow.

Different possibilites exist to fulfill the Kutta-Joukowsky condition numerically: in the present calculation scheme the pres-
sures at the two control points adjacent to the trailing edge are made equal. This condition has to be fulfilled simultaneously
for all "Kutta points". Fig. 1 shows a landing configuration with a well-defined gap between wing and control. In this case,
Kutto points exist not only on the oscillating control-trailing edge with a corresponding control-wake, but also on the wing
trailing edge with a corresponding wing-wake. Difficulties occur in the numerical treatment of the Kutta-Joukowsky con-
dition at the trailing edge of the wing due to the strong interference effects in this region. Experimental investigations 131
of this configuration Aith oscillating control and with open and closed gap have shown the severe influence of the gap flow
on the steady and unsteady pressure distributions and overall lift for this configuration. These problems ore significant for
the treatment of active control problems.

3. Boundary layer diplacement effects

If the flow is still attached, it is relatively simple to heed a higher order effect of viscosity due to the displacer-ent effect of
the boundary layer. This effect can be represented in different ways:

1) by adding the displacement thickness, i.e. by thickening the profile,

2) by modifying the boundary condition allowing non-zero normal velocities prescribed by the buriary layer
displacement.

In the 'esent method the first alternative is chosen. Fig.2 shows the effects of profile thickness arnd borrdary layer ;,pl1ucr
ment in a section of a swept, tapered wing with a NACA 0010 symmetrical airfoil. Included are pressure. distribtiorvs ck,-
taned by lifting surface theory (dashed lines) and experimental resjlts 141. The results for the real parts show that the intro-
duction of profile thickness and boundary layer displacement reveals good agreement with the experimental re,,lts whereoas
the representation of thickness alone over-predicts the pressure distributions of the real parts Si,,ilar results hr. e I'eer, pre-
sented in 151 for subsonic and transonic flows. Only srrrll influences of boundary layer dlisplar'ern.nt ca be fo n.rd hn tir
imaginary parts of the pressure distributions.

The calculation procedure for taking into account boundary layer displace-.,ent thickre,. si perfor.ed ir thret, diff, r.rt steps

I) calculation of the steady pressure distribution on the wing surfac e,

2) calculation of the boundary layer for each wing section with the steady pre,sres of step 1 by -ranrs of a
two-dlmensional boundary layer code 161,

3) addition of the boundary layer displacemert thickrre.,, arrd cafilatior, of st.-ady ,ld -,rstedy pressure dis-
tributions on the thickened wing.

In most cases it is sufficient to stop this calculat ion process after the f rit r y( le It is ,io poble- however to repeat the cal-
culation for additional cycles.

4. Vortex flows

Two different types of 3-d separation described already by Maslell 171 and other% '.,y or. or, orbhitrary 3-d r ornfiq,ratihrs
the free vortex-type separation and the bubble-type separation

The free vortex type is already represented by the wake behind a wing free vortex loyers for atmt within a pressure field
have the tendency to roll up forming concentrated vortices. Thee vortices can be observed within the flow abort vrjt;co%
configurations creating interference effects on the steady and unsteady pressure distributions at the hody surfaces
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Three configurations have recently been investigated experimentally (fj 3 ):

1) the tip-vortex on a blade tip (rectangular wing with NACA 0012 airfoil section),

2) the leading edge vortex on a 3-d wing with highly swept leading edge (NORA-experiment),

3) the body-vortex on a blunt body of revolution at incidence (ellipsoid of axis ratio 3 ).

These three cases have also been investigated numerically by the potential theoretical method calculating steady as well as
unsteady pressure distributions on the different oscillating body surfaces. The comparisons between theory and experiment
will be discussed next.

4.1 Tip vortex

The sketch in Fig.4 shows the configuration which has been investigated experimentally in the low speed flow regime [8V.
This blade tip has a NACA 0012 airfoil section and a rounded tip. Steady and unsteady pressure distributions have been
measured in eight chordwise sections where four sections are concentrated in the very tip region (0 < 71 < 0.1 ). The blade
was oscillating in pitch about the quarter chord axis. The cases discussed here were measured at a frequency of 8 Hz and
U O 50 m/s (w* = 0.402 , based on chord).

Figs.4-6 show theoretical and experimental chodwise pressure distributions for three different incidence cases (a = 00/
40 / 60).

The plots on the left-hand side show steady and unsteady pressures at an inboard station with quasi 2-dimensional flow. The
right-hand plots show the situation in the very tip region. In all cases the differences between theory and experiment are
very small at the inboard section. Remarkable differences however occur in the tip region. Such differences appear in a
steep negative increase of the steady and particularly the real parts of the unsteady pressures with increasing incidences.
These effects are due to the tip vortex formation shown in Fig.3 affecting mainly the y-velocity component on the wing
surface (outboard velocity on the suction side due to the tip vortex).

A simple quasi-steady correction based on the measured steady pressures can be made to modify the calculated unsteady pres-
sures. From the steady pressure coefficient

c : - V (1)
P xsI ys

with V and v as the steady velocity components relative to the surface (non-dimensionalized), one can calculate the

experimental v -velocities under the assumption that the x-components remain unchanged by the influence of the tip vor-ys

tex. The measured and the calculated V xs-components are therefore approximately equal.

Plotting v at various stations x/e versus the angle of incidence and determining the slopes of the V (a ) curves, oneys ys

)btains the quasi-steady velocities vy i by introducing the Bernoulli formula for the calculation of unsteady pressures 11.

c ' - 2(-u +vt v" -* v- ')
c xs xi ys Vyi

(2)
c '" : 2(Lo*/ +L' V ." + L+ '*0

P i xs xi ys IY

The underlined terms in Eq. (2) are now modified by the measured data, whereas all other terms remain unchanged. One ob-
serves from Eq.(2) that the real parts Z " are modified by the product v • . ' which is large where the influence ofp ys yr
the tip vortex is large. The correction of the theoretical curve is represented by the dashed line in Figs.5 and 6 (suction
side only). The correspondence with the measured data is satisfactory. The influence on the imaginary parts however is
very small. The reason for this seems to be that the tip vortex is moved by the pitching oscillations approximately in a plane
normal to the wing surface. This leads to negligible phase shifts in points on the surface.

Another interesting viscous effect on the unsteady pressures can be observed mainly at the inboard section (Figs.4-6). Start-
ing with a laminar boundary layer calculation 161 from the stagnation point, the program signals transition at specific points
on the suction and pressure side of the wing (points indicated by an asterisk in Figs.4-6). In the upstream proximity of these
points a jump in the measured real and imaginary pressures can be observed which is large on the suction side. The influence
on the steady pressures however is very smrall.

The effects of a boundary layer displacement correction is shown in Fig.5 . The changes of the pressure distributions show
the previously discussed tendencies. The effects are relatively small.

4.2 Swept-wing vortex interaction

Figs. 7 and 8 show calculated and measured steady and unsteady chordwise pressure distributions on a 3-d wing with a highly
;wept leading edge undergoing pitching oscillations. The experimental results were obtained from the NORA experiments 191.
OnlI the subsonic case ( AM 0 - 0.6) has been compared with the incompressible theory. The complicated profile of the
NORA-model (droop-nose) has been taken into consideration. Again a good correspondence between theory and experiment
con be observed in the zero-incidence case (Fig.7). With increasing incidence however severe deviations from the calcu-
lated pressures are observed in the steady and unsteady experimental data (Fig.8). In this case both the real and imaginary
pressures are affected. These effects which have been found for all experimental results within the measured Mch number
regime must be referred to a leading edge vortex shown qualitatively in Fig.3 . Aside from the tip vortex effects, there ore
now re.markable phase shifts due to the fact that the leading edge vortex is moved by the pitching oscillations mainly parallel
to the wing surface. The phase shift between the wing motion and the vortex motion is clearly represented in the imaginary
pressures.
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A correction of the unsteady calculated pressures using the measured steady pressures in the vortex region is now more diffi-
cult due to the missing information of the mentioned phase shift.

N shows calculated and measured steady pressures at four chordwise positions at the leading edge plotted with respect to

incidence. The slopes of the curves are obtained from the amplitudes of the unsteady experimental results. The theory shows
the expected linear dependency of a . The experimental curves are linear only at very small incidences. The steep gradi-
ents of the experimental curves show the downstream shift of the leading edge vortex with increasing incidence.

It is important to note in Fig.9 that the absolute values of the measured pressure coefficients and the slopes of the c (a)
curves obtained from the measured unsteady pressure amplitudes fit together quite satisfa:torily. This is again an
indication of the quasi-steadiness of the vortex influence on the unsteady airloads of the oscillating wing.

4.3 Body-vortex interaction

Different types of viscous phenomena can be observed on blunt bodies of revolution at incidence. Aside from a bubble-type
separation at the rear part of the body which occurs even at zero-incidence, body vortices are formed at small to moderate
angles of attack. This latter type is a free vortex layer separation which has been investigated experimentally 1101, I111
and numerically [12! , [13] by several authors.

The three-dimensional laminar boundary layer calculation on ellipsoids at incidence by means of a finite difference method
is described in 1131, Flq9 shows the development of the calculated boundary layer thickne- on the entire body sur-
face along different equipotential lines. The boundary layer thickness shows a steep maximum at a certain position on the
leeward side of " , body. Further downstream from this position the numerical calculation becomes unstable. The line of
instability points is interpreted as the separation line, i.e. the origin of the two counterrotating body vortices. Fig. 10
shows a side- and top-view of the calculated separation lines on an ellipsoid of axis ratio 4 .

The panel-type method for oscillating blunt bodies at incidence (121) takes into account the exact boundary condition on
the real body surface and uses a body-fixed frame of reference. With this concept it should be possible to obtain a good

correspondence between theory and experiment even on bodies with considerable bluntness. Intensive experimental studies
have been performed on an ellipsoid of axis ratio 3 at pitching oscillations in the low-speed flow regime 1141 . The follow-
ing comparisons between theory and experiment are made for the case: f = 8 Hz , U = 40 m/s ( ,* 1 .257 , based

on total body length).

Figs. 11 and 12 show steady and unsteady pressure distributions along the leeward line of symmetry of the body at zero-

incidence (Fig.11) and at a = 300 incidence (Fig. 12) . Two other theoretical methods are included in Fig. 11 : the

slender body theory with a singular behavior at the leading and trailing edges of the body and a method 1151 based on the
application of spheroid functions for the solution of the governing Helmholtz equation. The panel method, which uses a

pure source distribution, yields a very good correspondence with the experimental results at the front part of the body.

Hardly any deviations can be observed in the steady pressure distribution at zero-incidence except at the very rear part

(x/L > 0.95) of the body. Larger deviations however can be seen in the real and imaginary parts of the unsteady pressure
distributions. In the high-incidence case (Fig. 12) the correspondence between potential theory and experiment is again,

extremely good at the front part. The steady pressures show the expected deviations due to the blunt body separation at the

rear. Some additional viscous effects can be observed further upstream showing a remarkable peak in the imaginary pressure
which is shifted upstream with increasing incidence. Both real and imaginary pressures reveal deviations from potential the-
ory downstream from this pressure peak. These viscous effects must be referred to the influence of the body vortices. !, th
case of a very thick ellipsoid of axis ratio 3 at moderate angles of attack, the strength of the body vortices and their etfert
on the surface pressure distribution is relatively small. It is interesting to note that these viscous effects can only be observets
in the unsteady but not in the steady pressure distributions. Unsteady pressures due to small amplitude oscillations ore a vcry
sensitive indicator of viscous effects. The differences between experiment and a sophisticated potential theory 'ery clearly
show these effects of viscosity.

More details of the influence of the originating body vortices can be found in Figs. 13 and 14 . Steady and unsteady pre,
sures are plotted against the circumferential angle o with the angle of incidence ) as a parameter. Fig. 13 shows the :t-
uation at x/L 

= 0.088 . In all incidence cases the differences between theory and experiment are very snaill . further
downstream at x/L = 0. 196 the differences are again small for the lower incidence cases. Remarkable deviations fro,
potential theory are observed however for the a = 300 case at the position 0 1430 . Both real and imaginary pressure
parts are affected. The position xiL = 0. 196 approximately coincides with the location of the pressure peak within the
imaginary part in Fig. 12 . It must be pointed out again that the steady pressures in Fig. 14 show only small differences
compared to potential theory.

The reason both real and imaginary pressure parts are influenced by the body vortices can again be explained by the particular

location of the body vortices with respect to the axis of rotation. Fig.3 shows the situation qualitatively. The pitching os-
cillation of the body about a pitching axis parallel to the y-axis causes an oscillatory motion of the bor/ vortices along the
body surface. A phase shift between body motion and vortex motion influences the unsteady pressures on the body surface

accordingly.

5. Rearward body separation

On blunt bodies at incidence, two different viscous phenomena at the rear part of the body can be distinguished:

1) Thealternating separation of the body vortices at very high incidence (a -! 300) The frequency of this
alternating separation is determined by a special Strouhal number.

2) Separation of the turbulent boundary layer forming a rearward separation region and a wake behind the body.
This phenomenon occurs even in the zero-incidence case.

These two viscous phenomena occur also on non-oscillating bodies. As long as the forced oscillation frequencies of the body
are small there is no influence on these two separation types. On the other hand there is a severe influence of the rear-body
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separation on the unsteady airloads. It is very difficult to make allowances for these influences. One possibility would be
to perform a boundary layer calculation (at least in the two-dimensional, axisymmetric case) to determine the turbulent
separa',)n point. Downstream from this separation point the wake could be approximately replaced by a rigid body. Such a
modelfing of the separation region achieves the proper correction of the steady pressures. It should also correctly influence
at least the amplitudes of the unsteady pressures. Further intensive studies of these complicated flow situations with respect
to unsteady airlocls ore necessary in the future.

6. Conclusion

Potential theoretical calculations of steady and unsteady airloads on oscillating wings and bodies have been compared with
corresponding experimental results. The deviations between theory and experiment yield direct information about the type
and magnitude of the different viscous phenomena involved.

It has been mentioned that the Kutta-Joukowsky condition as a phenomenological condition includes the major viscous effect
for lifting configurations without flow separation. A higher order effect of viscosity including the boundary layer displace-
mont is taken into account.

Three-dimensional flow separation can be of the free vortex layer type or of the bubble type. Vortex systems have been in-
vestigated about the following configurations:

1) blade tip with tip vortex,

2) leading edge vortex on wing with highly swept leading edge,

3) body vortex on axisymmetric body at incidence.

In all three cases the effects of the vortex flows on the steady and unsteady airloor'. may be clearly localized. If the vortex
location is known a priori as in the blade tip case, a quasi-steady correction of the unsteady airloads using the measured
steady pressure distributions can be successfully used to represent the major effects of the vortex flow on the unsteady airloads.

Measured unsteady pressures are found to be a very sensitive indicator of viscous effects, while local deviations from poten-
tial theory signal boundary layer transition. The origin of the body vortices on blunt bodies at incidence can be localized
clearly where influences on the steady pressures are still very small.

A simple model representing the rear body separation region should give a corresponding correction of the steady as well as
unsteady pressures within these regions.
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SOME REMARKS ON BOUNDARY LAYER EFFECTS ON UNSTEADY ArRLOADS
by

R. Houwink
National Aerospace Laboratory NLR

Anthony Fokkerweg 2
1059 CM AMSTERDAM
The Netherlands

SUMMARY

These notes of an oral presentation discuss steady, quasi-steady and unsteady boundary layer effects
on unsteady airloads on oscillating airfoils. The discussion is illustrated by experimental and theoreti-
cal data for wing sections with oscillating flap. The notes reflect results of current investigations at
NLR to obtain insight in boundary layer effects, and to include these effects in prediction methods for
unsteady airloads.

LIST OF SYMBOLS

c chord length N ratio of boundary layer effect vector to
c lift coefficient inviscid lift vector (Figs 8,0)

c hinge moment coefficient (positive tail up) Re Reynolds number based on chord
C n pressure coefficientU free-stream velocity
p xt  transition point location

k = -- reduced frequency s°  mean.angle of attack
2U

1 6 0 mean flap angle

k =- unsteady lift coefficient due to 61 flap amplitude61 flap deflection 6* boundary layer displacement thickness

M free-stream Mach number C
c AC =- unsteady pressure coefficient

2 n IP °
c  = - - unsteady hinge moment coefficient 

index

Idue to flap deflection index
d first harmonic component of respon.se to

sinusoidal motion

1 TNTRODUCTION

The background for the interest in boundary layer effects on unsteady airloads at, NLR is the predic-
tion of operational limits with respect to flutter, buffet and buzz. Typical flow regicns of interest
(subsonic and transonic attached flow, separated flow) encountered by an airplane within its CL-' bound-
aries are shown in figure 1. The basic aerodynamic problem studied at these flow conditions, is the deter-
mination of unsteady airloads on wing sections and control surfaces in harmonic motion (e.g. ?ijdemanI .

Various problems hamper the prediction of unsteady airloads for free-flight coridi! ions:
- wind tunnel data are affected by wall interference and scale effects (in particular of toy 1, ,s :.ur!s.-r
- inviscid subsonic and transonic flow theories breakdown due to the neglect of viscous ,ffec:.- i"

separated flows, as well as in attached flows with strong nrpssure gradients e.g. at trarsi' fr w
conditions, control surface deflections).

In the latter case, for instance, the applicability of linear theory t reak- low ,u' e rrr:
due to the neglect of both thickness and boundary layer eff-cts de not anl .. k .

n

subsonic flow appl'cations. For a better theoretical ordirt ion of unst, ady air,,ais, I .,
be takEn into account.

t. these notes first some general infurmation on l,11ndary lay,.r fn.
thickness andf boundary layer on unsteady airloads or tw a i.rf, NA A ,, ' '.
tating fLat are itl1usttrated ly experiment at and theoret'a] r,,t I:. . '
cnsn ed steady i nviscid flow-bourdary layer cs)mputatiots': .silg tie ', ,

sr, sown of a coup led unsteady irivis" i I traisonis fow-steady i-ionar . '., i.

- 1. lod at. I renm' lag-,ntrinmit metho,
',

.

, A Y tAYt}P rFtw',: N vL12 iTYA:. FY14

'U. i a t ir t . ; r j t r ' ' 1 ,r .T

f . i. , m, ry . r

w .,L T .t. , T r ,  ,, [

'W , , . , " + " , ." , " . 't " t 
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3 UNSTEADY BOUNDARY LAYER EFFECTS

3. 1 General remarks

The unsteady flow is characterized by the change of all flow quantities with time relative to the
mean steady state (Fig. 2). The boundary layer affects the unsteady airloads both by its mean steady stat,-
and its unsteady change.
- The mean steady state of the boundary layer affects the mean steady state of the entire flow, depending

on geometry, incidence a0 , Mach number M_ Reynolds number Re. The unsteady airloads depend on this meat,
steady state, in particular at transonic flow conditions.

- The unsteady change of the boundary layer (in particular of the displacement thickness) influences the
effective motion of the airfoil. This effect depends on the mean steady state of the flow and (for
harmonic motions) on the vibration mode, amplitude and reduced frequency of the motion.

Besides motion-dependent effects, the boundary layer may cause unsteady effects independent of motion (e.g.
turbulence, unsteady shock-induced separation), which usually interfere with motion-generated effects. In
the following only motion-dependent effects are discussed.

In the case of unsteady flow due to a harmonic motion, the boundary layer effect on the unsteady air-
loads will consist of:
- influence on magnitude and phase angle of the first harmonic components (both in separated and attached

flow),
- non-linear effects as (influence on) higher harmonic components and dependence of airloads on amplitude

(in particular in separated flows).
These effects are important for aeroelastic behaviour (e.g. for flutter boundaries, limit cycle motions
etc.).

In the following, some of the boundary layer effects discussed are analysed by theoretical and
experimental results for the NACA64A006 airfoil (in subsonic and transonic attached flow) and the NLR 7,9
airfoil (in transonic separated flow) with oscillating flap. The analysis will be split into:
- quasi-steady analysis of steady flow data to determine the effect of the boundary layer for the given
vibration mode and amplitude (10 flap deflection) at infinity slow motion,

- subsequently, analysis of unsteady airloads to determine the effect of reduced frequency on the boundary
layer and thickness effects.

It should be noted that the experimental data are affected by wall interference effects. However, in
view of the dominating effect of the boundary layer in quasi-steady cases considered in the next part, it
is believed that such a comparison gives at least a qualitatively correct picture of the effect of the
boundary layer.

3.91 Discussion of examples for attached flow

The present results for the NACA64A06 airfoil concern a subsonic case (M 
= '.8) and a transonic

with shock wave (M = 0.85), both for 'ero mean incidence and flap angle (a = 6 9). The data shown are:

- experimental data from Tijdeman
1 

(:e = 2x1O
6
, transition fixed at 10 % chord)

- in the quasi-steady analysis, theoretical results from the BGKJ program (quasi-conservativ full-pot-.: ia]
theory) with and without boundary layer computation

- in the unsteady analysis, theoretical results from the LTRANS - NLH code (imoroved low-freque ncy trar:.-
small perturbation theory)

- results of linear theory.

Steady and quasi-steady analysis

Figur in shows th,e flet of the boundary layer on the steady pressure distribut ion i:. Ih, .

,'s,' at one degre'' t'iap Pilotion. Figure fl) shw! the, 1ua-s-tady pr,,ssure di stri !ut .( 'n
derived from figure ia. The bounlary layer leadds to a more upstream location of th, shock w f
its mean steady state) and to a lower AC level (offect of both its meani steady stat,, ani i s ,ia"ii '
change). Globally, the boundary layer reduces the effect of thicktiess, and dominates .h,. wa]I- trior''.' ,

,effects. This is also re.flectd in the overall lift and momontt (AciAR: r.tatin' st oh.wT
tat c- 1. N,,t- the stronger e1*ffects of thickness and loundary layer in the tora,or. a:it'.

Hi ure" 4 shows the- distributions of dispiacmnt 1,hickness- A* on upper arA lower :;i I' 'it ,W , T ,'
flar, d.efl-ction, for M_ = 0.3i and IA = iT. 'he di fferinc A6*, iorrespoldiing th' juasi-c;1,.a ty 'hal',K'
at, Ine tegree amplitude, tecambers the airfoil lik, a "viscous flai'" mpositof 'th' 'm'tri,' iAi,: m

i'hi:; L't is pr,,pably iue, t,> he strong quasi-st.'aiy pressur,' pea.s at the Liar l-adin " '.'' 'tot, * ..'t,
trarni' ea",', - at the sh'k way,, (Jig. 3)'

T''"ty analysis

Fciur' ', shows -xprim'ntal ali theor,'i,'ai m, an :steady r,';sur.' i.ri ulil fs r ''' tr; ',
:- A ' irnvi o,'id si, th- ry "lIlA . - NIPP) sholw a ;lit' ly a:,', ,'r a:I mr tw r' rIn "k
wav, parfly' + i' t-th" neglect o1 f 'he tiunlary lay,,r.

Figures ' ant ' sh,w lh'' ,'ffer't of thi 'kno ''I tf''r,' t.' 'twe,:. lirt-ar and tran , i ,- '' Ytr' ali
h-',' tary layer main par' , i ff,'r,'nc' bet w'''' trans ti' fh,. ry and ,xj,'rim 'n' t , 1h' h- sta y ILf ',i

n ~t'g " m t .0, ,1') 'i ' ,, -,.h ,' t her h o m nii- 'o',l th 'ranoni ,as''. I -r, t L, ' ,'.,-rfi 'N'',, I
Fig. ' th'" 'f fe',t f' h,' t-untary layer is stru, it lte en:. ,n Fm''tjl q'y atI 'At tnlmt'r antA I:
p,:;i''' i ,' t, 'k e, ', i ''.? h' King' moments int:gi m'' ' siwv a ti'',r'tf .,ff' ,On"h,' Mu: 1tar1 "I .

,matlnj re-tuin 'h'' ma:' i'ler, ait ' riy sl;pt l' t''' t 't i' 'a. IA 'itt' k



The differe nt bounidary layer efftects or, i f't iil i w,, -1.!
- the effect on the hinge moment is domiriated b Iy alr. urprn X: ."11.
- the effect on the lift is a combination of the albev "Vi'j-ri< "I '... o-I'. iv .

the interaction of the boundary layer wit h the us' -niy I, r.'3ir-; r-L up ar,
at the shock wave in transonic, flow, possibly a "Vi i ran'l " ,r o-l
large phase lags, depending on k, and so introda.-, 0o;r !fw,! a'nir' 1-be in i1o bolvilary
layer effect on the overall unsteady airloads.

The boundary layer effect can be illustrated -vt r'i r'i-a ' ur !i v ectn r 1 of th9
unsteady airloads, for example in figure 8 for the I-iln in t1-!ri. "%i uli Th, i ~ren v,-ctar f
the experimental and theoretical results, which mairly r, 'r!- I1 ff- I ourilary layerlhm
a strong decrease in magnitude and an increasing pha.3e "ar, Wit vrrIU;1!J1 ' 7k:l fiI,7ur- , t11
effect is shown both for the transonic and the suboic 1.~ t .;) r. w,,,, 1, lv .ri
of the difference vector to the inviscid lift vector (for thi,, rtin ~ ',
stronger boundary layer effect in the tr'ansonic case is, 1arV, y ili,,

Prediction methods

Analogously to steady flow, a feasible pre-lict itn "I,. ira- at -C'.

flow can be expected from coupled unsteady irivis;cid fiow-t-il~ar- Iit.P ::i;,!it
Grerrono). In applications of this prooedjure for trtunsr~ -n. CI';W W.h .11s
effect at the shock wave (as modelled atrid appli-I :10, 'l I ly ny Y ''-, ..

can be accounted'for properly.

At NLR, as a first step towards lsuch FA pre ... lure I "i- !'A -.-

entrainiment method of (Ireen for a stealy Isirbulertit, touidary lay' r. i w'

sri unsteady pressure distribution for the NACAtrilA 1)' i;rfai 1 at tn.':.!.I
with oscillating flap (61 1o, k = .).Aocouniting for tb esiay i. r I. c-..

leads to a considerably better agreement with the oxotrimei:1tal datai.

Remarks on further investigations

In order to support the developmenlt of pr-Ilictiarine thdVrIh x - o. .i~.'
tigations are necessary on:
- modeling of local unsteady strong interactlin reg,?ionrs and the un~ti'a ly wyak.
- non-linearity of the boundary layer effect
- unsteadiness of the bouridary laye-r r-:ipcr-ns, to insteady pressiure Ii:;1 r: -l

of applicability of luasi-stoady bourndary laiyer preIdiction method:;.
Besides the above investigatiorns on; bourilary latyer effects, also farther ct s1 '
is necessatry to facil itate the interpre~tation of theory-exToeriment COmpaFri -ii.

The above remarks also apply 1, strongly s;eparated flowsz, where the- r migr.tI
methods are hardly available. An 'saimple (if unsteady ai rloads in separat..l -.

the next chapter.

3. 1D-iscuission af xalefor :;e-part' tranisorii,- 17law

The presenit resiults for the NU.1 7 I111 ati rfai I -orio-rn at rarator. ai . '

a separatel 1-ourdary layer iownstreamu of at shok wtv, )n t t upoer :airfa iv'' 'x, - r., !. - M'
r-elated tor H'f s1,) with trtn!-.itionri ix-i ait - T oi. Fi guri- ;hw:; :7.-n ...............
buft;or,. fi figIur. 1.', the 1 uo~t'ir.-ssnure li:-trilit ic)r.in ,I th-siri- rct I- '" 1i

ir;l 1shws the dlominatirng .ff-,t if' 'he flow ;-patat ion , b y r he :z-.ong i 'i.P'ir

I rid by th-' negati v,- pri-sure eal. ait, I h'- ;h. wavy, ( 'inl-O utlH'r -it,- r' ti, in
tiwriwarl f ap, lflt'ctioj.

1'n .A;i,,w the fleet* 1-i., r t 'Hr I:. nrr-i uMm m'.. ft ri ,', 3. 'The irvin,-id trarii;o ,- r, t ''iry r, lt : 1- si -1w,- 1 , %-I,
1 w',r rr )f tIfattck , having th' strel wrv' I .'u ij 'T. 11 h Way I1", ff . I f,-

Isg t I . ' r I riy'ar.. . ,-Ir t r r- .t r v it. i tnl- -ii I, r,-'. r
-r Ii' ' I , 'u I 'r1iij vi- at hH,

hr' I, r - .i'i

t' 'I W . Ii I .
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TABLE 1

Quasi-steady airloads on NACA6I4AO06 airfoil with oscillating flap

Thin-airfoil Theory of Ref. 2Eprmn

theory Incl. thickness Incl. thickness Incl. tunnel- Uncorrected
+ bound, layer wall correction

M k to k IT k m k to k to
c r c c c c c- c c c

0.8 2.03 0.69 2.44 0.80 1.88 0.65 1.66 0.61 1.32 0.61

0.85 2.31 0.79 3.61 1.29 1.94 0.60 1.82 0.75 1.41 0.75
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NR7301 AIRFOIL WITH FLAP
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Wie '!sCN.tj0iil DA1 tude el Recherche, .AeroIpAmiis (0\I- RAI
'Q Ave de la D~itsioti [eclere

-3 20 ( hatillon Wrance i

1 1 v isqueu x des icou leisents ins ta tionnaires su r prof Ils d'a il es e st rechlr-

1 oj,, a~ I~ i lONER-A, d one part pour le f lumie parfait Loen tli~or i deLs petitLes

', t r1 ~Yt, pa rt pour le calcul et Ile cou plage des couches v isqueuses e~n r~g imu

,c it ti~ o-visqueuse, calculI par one mCthodf, int~grale, ditermine lavi tesse

* i : -I [.,-s parois. Les deux prcitl~mes, r~solus par des m~thodes implicites, sont

ti att' ;arantiv di- validitC, du modlle visqueux et de r~gularitc- des solution.s

I. (,-Ild ge a toutefois ItI trait6 num~riquement que stir des configurations
i, *.. .tar:let aux profils avec gouverne;.

0 i(1lI~'ON' OF I'NS TEADY BOU12NDARY LAYE IF1FELCTS

A compu tat ion of viscous unsteady i 1-se over wing profi les is researche-d using two methods

elaborated at ONERA, on one hand for the inviscid flow, within a transofic small disturbance approach,

o~n the,, !,,r band for the- calculation and coupling of viscous layer, within a strong interact ion analysis.

The difference between the viscous and inviscid solutions, calculated by an integral method,

determines the inviscid normal velocity at the wall. ihe two problems, solved by implicit meILthods, arc,

linked thr igli a "strong" coupling, guarantee of validity for the viscous model and of r,-gularity for

separated flows solutions. For tile time 1-inc, tile coupling has be-en appliled numerically only to non-

separated flows configurations, namely for profiles with trailing edge( flap.



h g~nm&trie Au prof iI - h (X,t)

k frd quence r~du it e - k =Wc / U

xy coordonnues do rep~re relatif

Ct coefficient do frottement

C, coefficient do portonce

C, coefficilent do moment aun quart -- ilit

(moment positif ontratne I,- hord de fuite vera le baa)

C coefficient do moment dc charni~re

(moment positif entratne lo bord de fuite vers le has)

CP coefficient de proasion inatationnaire

Kp coefficient de proasion stationnaire

MW nombre de Mach amonit

R, nomlre do Reynolds

XY coordonndea du rep~re absolo

aE paramLitre de forme

6 paiaaeur de ccxche limite

6 braquago do la gouverne

(poaitif at le bord de fuite eat vets ie baa)

6paisseur de d~placement de conche limite

a 6palasenr de quantitt de mouvemnt

9 ddflection induite par la couche limite (X,r)

p masse vulumique

1P phaae ou potentiel de perturbation

(1) pulsation

Firculation

Instaionna ire ixi Incompressible

m moyen on statinnarre

n inldice telporel

6relatif an braquago de gonvorne

1relat if an premier larmonique

*critique on relatif .a 1'epaisiir de o ~p Ia'wont
-relatif ii l'6cnniement visqueiix

variable intormndialre



Les otliodos doe calcal liniaires sont lo suppurL ussontiel do la pridiction des icoulcent!

ins tat inn i re pour lee aero lasticions. Too tofois, cog mithudes no aunt pas appi icablos dlans le
donaine, trau-seoniqoc ou i'on observe d'important .5 nun-liniaritis introduites par Ia prisenco d'ondos
do rhft. (:05 dtvrnicros annoos, diversos m~thudosaont iti- pruposics pour caiculer los i-coolemonts
tridiwvoosionioir dle fLUide parfait en tisasonit- Ces mitliudos do risolutiun a'appoiont, suit mar
i'cquaition des potites perturbationsi toao-siiitusi [1,2,3,4], suit sur lea iqjuatiuns d'Eulor 15,o].

* Is derniZres nlcessitont des temps do calcul importanta ce qui unmite fortusont Leure possihilitis

d'spplication bien quo'n principo clles soiont plus rigoorousos.

Nu vot de confrontations aver l'ospirionco, on roraarquo quo l'hyputhhso qui consiste a :.gligor
* los offots do is viscositi pour no considiror quo ie fluido parfait introduit, particulieroemont .<n

rigimo trarissonique, des orrours importantes. Ainsi la position do l'ondo de choc et son intoosit6
sont itrrituent Iios aUs raractiristiquos do is coocho unmite. Un calcol on floido visquouxs des
icoulomoats instarionnairos doit dis Lara Ztrv rochorchi,.

1Ino promiiro apprurho consiato, i adjuindro ato calcol on floido parfait on csi cl dv cooc1i, I i7 itt
or A a~stirr ontro ens oin couplage prtriel, qualifi6 do couplage faile, c 'oar-i-dlire noe ruspoc tot pa4-
totalomoint la riciprociti dos influences visqocusos ot non-visqucuses. Lotte aipprochu, cotheocato a%,
is tliiorie do Ia coucho limito classiquc et Los rigimos do faiblo interaction visquouso, conduit .1A l

simplifiration numiriqoc majooro on raison do dicouplago partiol des dus calculs. En instatioonsir,
ties amiLiorations notablos ont di~ji 6t6 apporrios do corro faqon [71 aos ,(, o, n fluid( parfait.

Nianmuins, on starionnaire oo on instationnairo, cc typo d 'approc. 0 contient en lo-:t~d'Ii:.jor-

ranros limitations, qul ont irA ditaillios par ailloura [8,9,10, 11,12, 1 3[. R appelons lin selotment

(i) is rostitution imparfaito et parfois inconaisranto dos dorsointi; d' (of boone do fin ide vis-

quous inhironto so couplago faibbo, notammont poor Los intiractions cisqoeusts en sopersoniqot oil
trauissoniqoc aus piods des ondos do choc,ailnsi quo pour los problimos do dinollcet~nr ou do bord
do foito.

(ii) is prisonco poasible do singoisriris icrinliarca dana ie solutions di, -oucle limte, pA ni-
rabonont on liaison avoc i'apparition do couranra do rerour. Bien quo do natureus diffirentos on

stationnairo et en inatationnairo, ca singularitis aunt artificiollos, n'indiquont pas 000 linito do

*val iditi des approxImations do coocho mince, rnm au s niveso le plus roatrin tif des iqustiong do Pyowt 1
mats tradoisont avant toot is niccasirZI d'on calcul do forto intiraction visquouse.
Los aingularitis pouvont norammont trc iliminioes 19,12] par des mirhodos do, risolot ion inverses,0

encor par oin cooplago rigouroox au fluido parfait, qoalifi 3 do coupiage fort.

los Limitation pricidontos imposant lo divoloppenont do calculs do forte interaction visquouso,
deux grandos voies d'analyao aunt posaiblos 18]. la promiiro conaisto 0n0000 approcie globaic, risol-
vant oin svstimo d'iquarions unique valoble dana toot be champ dl'6cooloiaent (iquarions do NviortL

completrcs 00 tronquica) . Nais nous inriressons ii At is serondo posaibil it6, I 'appronlie par couplag,
fort, dlans laqucloe oin ralnil on floioo parfait pout Ctre maintono, grace A- is risolution siparie mais
:0116 Va d'n probl~mo vi squcos romp l~ments ire, qu i ginA ral iso lo concept do coi (10 1 it t, et qtii do-
termint on prat lqti boa conditions asIX licites (lit flaide parfait.

Notis conaidironsaon utre ini on couplagec fort dlana boquci des approsimations do type cowdIe
nilnce, att olides oil dicoll 1 , pouvent Ztro valall mont invoqoicas pour Ie probli me x isqocos.A I

nivoso d 'spprox imar ion, Ie :thlur a contrA [8,9, 11 1 go 'one formul at ion dif icitait to poolr recomnposor is
solitont1) viaquouise rid ic, Ai part ir des doux calco is coupltAs visqocos et non-visquous const ito t ifs, per-
miet non soul oment d '6viter lous limitations des nitliodes do couplage faihi c, mais encore tel Its des ri-

thiodes class iques de coulpage fort, doans lIesquelle se ant mises on jou des iqoat ions do i i 11101 I . sTis

q(0'110 cOip lage par racrordosont cur oine front i ire ox:.terno o encore par add it ion d'line a~5issotiio do
ltplcirient . ~I furmidtrion di ci taire doi -lupislge adoplie fri suppose en post iqut 1e rkocuuvroVlient
(is- I:,ti ines It ca -it Is vistiloiv it -,ttnon-v i squetis, I e r Io dii c a Iir1 v is qu eix se hornan t (i vaIue (r ,
(ins l,. " ions I lot- I rdllos, ]'(rit (lii exist- intro ia soluition dot fluidi, parfait c'itlit I

tIi a <I t it:- pvl oll, ;,. I -tti- c'iivcl [C-- , 1 j 1 ap1 t0Olt('tn,- part la -srmoi~ nuntrr q-'t
I l'; I -;.Ijil. ;iiit -;lr II a11 ( i IS, Lot S1 soitt t d AllI e palt I 1 I 11( tI 1' IT-

it II Onll i11 1 tii 1 l jtII "l

II tI I lr*i I ii t -i 'i I s12,111 '(5 I

JS I(lt II i Il~I t 1 i -1 I 1 w, y

1* (U- i t I 1
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t i tx. u tottL. lies calculs s'appuivnt d'unt part sot la unetiode impi . itc des direct io'ns
L, II, I v, ; tI',ittLon du pot ent ie Idtes put it es perturbat ions tranissoniqucs (-- inSt at ionnaires,

JdeuA", kN AMnEl I %I , MLAK [l2j 11s s 'appu ien t d'autLr u par t -no r Ole mi-t hod v intL g ral 1 ts-
pi. 1 t~ 1,1L,';,n 1, -clches IiiEus tat sillages turbult its, ainai qot. sor des techniques du coupini,
CVe loi;-e At It- txIA.ITR UL CIROI)RuUX-L),VIGNE F&',li11 r-uanterent, bicn que le calcul visqueux

iiistati, insit puise tre poursuivi dans 'Cs zones a courants dc< retour grace a one r~solution de type
invera- LIZ],' couplage fort n'a vt6 r~alis6a numdriquemennt quQ sur de, configurations non-ddcolideb,
ainai .jOJvv, Uli tra-tement simplifita du sillage visqueux. Lea exemples d'application aunt relatifsa
des ecooluments transitoires, ainsi qu'5i des profils avec gouvernes oscillantes, en rdgiracs sul-critiqueb
jo supercritiques.

11. ?LUIDERARFAIV

Lea cquations d'Eulcr instationnaires qui rtdgissent l'6coulement de fluide parfait se ramP.-
int a I l'Onuat ion complete do potentiel des viteases a!d i'6coulement ust i - iiroip ;Itn et irrotationnel.

',I, Tottnes, de petites perturbations tranasoniques et instationnaires permet de siin,lifier encore I e
-eLi C fournit aprds normalisation I tdquation (1):

+±"," - - L m-SD' - n ( I +

D 0 Dx~t - X Dx )x 2 D x a

Yz [ (Y1) 13(1-M) m 2

(,ette equation reprdsente ia conservation de is masse approchide au sens des perites pertul hat ions Ill.
ion caractinre non-lindaire autorise, so sens des solutions faibles, le calCUA d'ondes de OwLt, cci-u
en contradiction avec 1i'hypothdse d '6coulement i sontrnnpiq irrotationnel . On do it donc --o lir it- Iz
ecoulements tranasoniques avec chocs de faible intensit6 si l'on recherchE une bonne approxlit ii

equations t'Euler.

Conditions sos limites sur le profil

L'6quation (1) eat associee i des conditions sos limites. Sur le prof il I -

nelie de la condit ion aux limit-s attachtie aux hypotlidses do petites perturbat ions -1

(DIP\ ZI h '"3,

oh. h ( x . t ) eat la foinccinn dcrjivant is geometrie du profil. on soulignera qu'au Vli

d'attaque des profil 11une condition plus complexe eat ut ilishe afin d'aIn
0

Ii, c-r le cow'qit:-
lutiol 11.

l'est ai ce Iniveau, comme nous le justificrons plus loin, qu' intervient I ou - --

parfait-couche lunite. ILe fluide parfait eat prolong
0

- jusqu'a is paroi Ct la couchr lttsilt I -
cosmie on apport de masse au travtera d. celle-ci. Si l'on considire que l'6quationl -

Pi t~.s nil--O --. r tP p-rria ti n, ii I ,-st ,Ia I- quo. Die/ Ey rnIc-u In ....- ;

n-n. Io-n Inn dinit"i : ( 'n) Ih dnlbjit litn-cLiln III- 1ii cnni., h t- 11 -I

lit~~~~ t- ni >nulin, i lXIIn auira

( Dx ti
keat so traVers die nette condition asoX Iimites (2bn) qnne s cii ictinera liC Coopla 11c t up I -

i ionite et IC fluicde narlilit.

[lana tl)Utl- Inc lt io 'III 1 rlbleiint 11 potentiei ndes vit es oin dolt d101 in ir It- tunt 1n ;' t ,it I.
7 ni circulation) ao traver. d on sillagc qol aix ddvelcippci laval do bond tie fiti . I s-P .

t tiunL do it tranluire ldI 11 til liit nu uff icient de pression (q). !)ljiS IC n i-lo 11P1t I t . bntlil.t

ranason iques I I on da i t r.- jut-

-P + 1L k. " O
2 x i

onn a donc:

kDr Df'

D t Dx

(.ette equat ion inyperbolIiquc trado it Ic t ransport de is c i ronilnt liii nl( I 'mnt v'- I ' i vi II

long du silIlage, nous Ia considernmnas uneae vsahi e (tans le cadre-niea appros ittt illS v ipls,- a, tiun-

lea. Par contre on (Jolt tenir compte diu ntmhit nd' ii)ctLion (wii de ftills) I it" in1uli In,-tnii'n.1il
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1
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1
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A p~ (xat z. y[ ]x t) dy

6 P 0

Hi( x6) 
_

C(xt 2 - 2,

Dans ces cquations intdgcales, les grandaurs non-visqueusas P,u,x at leurs ddrivdes partielles sont re-
ievdas en (.10,1 . Par aillaurs apparaismant des tarmes lids A l'accdldration d'entratnement Y.
en raison du fait qua les 6quations sont ccritas dans le repdre .0 y , mobile par rapport au replre x 0 V

du fluida parfait.

La formulation ddficitaira [8,11] des 6quations visqueuses apparait dans la ddfinitiun des Op)als-
sours intdgraies, qui prand en compta las variations salon ydap(x.yt)at x(x.y~t) dons la solution do flui-
de parfait, et par vote de consiquance de p(x~y.l) . Lea approximations du calcul autres qua "( y p .1 a,
P(xy~l ) sont ainsi glilnindas des 6quations dea continuit6 at da mouvament. Gas aVproximations consis-

tent en une moddlisation de reiations da farmeture liant las 6paisaaurs autres quo 6' et 0, aitisi quo 1l-.
tarmas visqueux C1 olE, modilisation issue d 'une famille de profils de vitesses ' 7u rd-prdscntot ive des
couches limitas attachdes ou ddcolidas, en stationnaira comma en instationnaire 11.),121. Pans catto modc-
lisation, las profius p/p aunt cdduits de'j/1 moyennant i'hypothZlsa, admissible en couloment. turbulont
adiabarique, d 'une identit6 des anthalpies totales visqueuse at non-visqucuso.

Si on suppose par example qua pfx,.ot) at u(x.l ) sont donn4ds par le calcul do fluidx Iofa it

potential, is condition aus limitos x [x.l ) ainsi qua detas 6poissaurs visqueusos inddpondantos 1~ )

at 0 (X, I ) . sont- calCUldes au moyan des 6quat ions intdgrales do cont inuitd , do mouvement et d '000

6quat ion da moment (ontralnament 00 6nargie c indt hjue). La choix do 1 '6quat ion tie moment , It i do I 'vqnta-

tion d entranament ost relat ivemant nd iffdrant dans I 'lypotlcse do Pr i I I 1:o . 11 dos lent par

,s'nt ri iImport'llt 18,11,11 on n! de gradi-it twrat L- i t ens"-

Foot on 6roulamant do fluide parfait potential stat lonna ire, ]a runt lnuitt' do Iii presOT IoP(x a)
sur Ia ligne do siliage antratne la auntinkut

0 
do Ia vitoss'a v(-.0) at do la majsse volumique p( xo)

lans ces conditions, on pout montrar qua las 6quat ions intdgralos do sf1 logo soot formal lament Ilti Iites

aus Oquatlons do coucho lirsita, a condition do ramplarar x(v a) parcv( af )> I lo disrut ottOit 1v

vitasse nurmale qui tradult dans IQ V bide parfait 1'of fat do ddp Iaromeuit vi squetasx



Les epaisseurs viaqueuses mises en jeu aunt alors celles ddfinics pour un aillage, par intlgration scion
y entre - co et tOD .Lc Lerme de frottementc , disparat. Les relations de fermeture doivent. Ztre Issues
de profils ' de aillage, mais elies sont identiques pour un sillage aymilrrique o dissym~rrique.

En prvmiZdre approximation, Ccs t6quations ,nt aussi 6t6 prdsentemenr retenues en instationnaire
mayennant l'lcypotlkeise, convenant aux basses friquences, que is continuit6 de is pression e(x,(c
qui implique toujoura la continuit6 de P(x.0.t) conduit a one discontinuird de vitesse c ~~o
relativement ndgligeabic.

dicoupidea du floide parfait, forment on systime hyperboiqoe, calculable d'amont en aval en i'absencc de

ourntsde etou, cnsttuat onprol~m au limtesen enprdscnceL de courants de retour [c91.
Dan lemod derisolution inverse a v / u4n .0. t ) dornd, le systeme hyperbolique des 6qoations viaqoco-

ssddcoupldes peut par contre itre risolo d'amont en aval dana toos lea cas [121.

1
sr i sat ion nomVrIeeeL~ do *Sattiti tiC il~i il Vi-fj"COSCS

D'on point de vue prariquc, lea 6quationa de couche limite soot 6crires en choisissant comae
variables de calcul:

- l'6paisscor de couche limite8
- le paramirre de forme a z8? /8
- l'angle d'inclinaison do vecteur vitesse par rapport ai is parol

Dana ces conditions le systi2me viaqucux peut s'6cr ire soies is forme

..tcLjgl eA. z 81 + Di,, t +Em

1l.
2

.3 1o 2.3 m:12

ou lea termes C i1j, A i , B, .Dimet Eim sont calcolds d partir des grandeers do fluide parfait et des
relations intigrales de fermeture du syatime de couche limite.

La discrdtisatiun a'effectue dana le plan (tox) en utilisant on schdrna impticite en(n.t .)

do ler 00 do 2lme ordre i-e x ,et do ler ordre en tempa. Danas le cas do schima do icr ordre, on 6crit
pa r exempie poor8

n'tt ni ,

d'oc

R-1 ~ ~ At D) t

Pour ]e achdma do 2Eme ordre, nous avons

,n+, 0,+1 r,,cx +t + z6n+t 1 6nno

+3 7 L. 8+..8 0 ( 8~
2 3 tt 3M ka



On obtient des formules identiques pour OQ a/Dt .Le achdma do ler ordre en x eat prdfdrds dans leg
zones a maillage grossier, pour sa plus grande atabilitds. Si noua rejetonsaslots au 20!me membre tous
lea termes connus sox noeuds (n.Iih-i) et (n.i) le syat~me local s'6crit au noeud

(n .1 i)soos la forme condensde

La resolution) en cliaque noeod du maillage de ce systime permet, aprds int{-grstion locale des

ddrivd5es '6et DIde, connaitre Ic-s distributions 8(X) A(K) h l'instant t n * ainsi que

t'6valuat ion visquc-use 9 (a ) A 1 instant t Une itdration par one mcthod- de Newton rtsout

de, fa~on implicite les terutes non-Lindaires contenos dans A*, et a1

Mcfthode numdrigoe en cou la e (forte interaction)

Le cooplage s'affectue, 1 un pas de temps fixd, de fagon itgrative. Un calcol de floide parfait
foornit i l'instsnt t" is distribution u(n,t(1 et p~ (x, t"') A Is paroi, le calcol itdratif
a'effectosnt sor la d6flection (E ( a , tin ) selon le ach~ma de is figure 2

11 gut cepenuiant noter qu'il ne auffit pas en gdndral d'itdrer pour acteindre is convergence,
l'erreor 1-8 en ebaque point x pouvant trda bien osciller sans jamais converger, et miime tendre vera
l'infini. be comportenent du calcol itgratif coopid dipend A is fois des caractdristiques de l'6couie'enr
calcol6, sinai que des pas de tempa et d'espsce At et~x otiliada dana is mithode numdrique. La figure 3
nous montre que, mdme pour one plaque plane sans incidence, on calcul convergent peut diverger si on sog-
mente le pas de temps 00 si l'on diminue le pas d'espsce. La risolotion do couplage fort par one simple
itgration de point fixe nicessite done poor le momns d'introdoire one soos relaxation afin d'aaaorer Is
sabilitE do achdma. itdrstif.

Cette constatation eat en toot point analogue so probidame do cooplage itdratif en stationnaire.
Pour l'instant, ml n's pas encore 6t6 possible de difinir one aous relaxation optimale, sotomatique, comt-
me en stationnaire, et le coefficient de soos relaxation eat eatim6 par ts'tonnements.

T V . RESUtlTATSN1MERIIQ!_ES_

Las stat ionnaires

NACA 64A006 - Mp- 0.50 8 2'

La figure 4 prdsente poor on cas stationnaire et sobcritiqoe le aot de pression normaliscO poor 'in
braquage moyen de is gouverne 6m = 2o. On compare ici lea risoltats obtenus avec et sans cooplage
visqucox a on calcol de plaque plane. A l'smont de is charnidre lea effets lids A l'6paisseor do profil
hc truduitsent par on accroissement de Is portance, ces effets aunt partiellement compenads par lea effets
vissjuc-ox. Par contre aur la gouverne lea effets d '6paisseur sont faibles alors que lea effers vlsquc-ax
iatroduli iscot ine sensibler diminution de is portance. On retroove cat abattement en considdrant le, moment

'I" ct'inic 'I' dimcidi d'environ 20 % par effet visqoeox. Cette demuire remarque sinai que le compor-
,,1 kt I.a~pii 1),I(! die buite correspond qoalitativement sox risultats expirimentsox obtenos par

l1'4 outefois tine comparaison directe A ceR easais tie noos semble pas alijnificativc
it t--t. t-I Jar-its sont importants (la hauteor de vt-ino diana Is sooffleric- neost que d environ

iit ,-1i igner (joe cc- calcol ne tient pas compte de l'6volotion viaqocoac- dana Ice sillage et
----I-- r1 -at ,t& obtenus avec on maillage de 4000 points dont 110 sum le- prof 11. ILe tempts die

.,, -ir .;,tn.*rer 'i partim do tranaitnire le champ de preasion atationnaire C-qulvaut (lana
* - . ii' j~ro.r le- calco

1 
couplI. Li, mdsme champ atationnaire en floide parfait ne demandce

rr( lrrsr. Inc esnide amdltorat ion des tempa de calcol eat conrevabc- en recltemciant

i t re ( scaniiti do touplage par one approche similaire i cc-lie pr~sentdc- en rt~f 1 101. A I 'ic-ore
i- r -:. T11 it ivi, d 'opt Imisat ion n's 6L6 fatte poor d tatnoer lea tempa de, cal c,,l , 1 ' tnt~ritt prre-
I Ir. t t-r I. .4 ttt Ac- demont ret cc- quc I 'on peot attendre d 'on cal cul avec coupl age fort-

igur t f, t p-rm*-tti-t de comparer ic-s calcola visquc-ox et iton-viaquc-tx, atnal 'juc- lea
*r. ,-fI I V par IIt II81-IAN I liI. L~a pr iac en comtc tie la couch, I hmt te ent raln kiti metlI I-our ;tstaht i-

t iltrlrit k- Ib.- linsi r1ii'Unt' dimintion tic son intensit6 dlue, a la fola .' tine- aissei- dti nveati le K



Lets deux figures ne se distinguent gue par le maillagt utilisC, star Ie profil, 60 points pour la
figure 5, 110 points pour la figure 6. Un raffinement do maillage n'introdoit pas det changements notables
sur lesi rtdmolrats :gente conclusion ne saurair cependant ktre gand-ralisde sans exprtnces numirigues
cnaupldmentmircs dans la mesure o6 lesi paramiitres de forme det cooche limitt sont ici modiris et goat les
twni-lin,'arit,'s visgueuscs apparaissant aux voisinagem des ddcnllenrts ate sont dung- pas pleineient mimes
en jeu. On peut cependant noter, pour le calcul visgocux, it Lion comportemeot au niveso do chug, celol-
ci se rapprocliant des points cxpdrisaentaux ;par contrt, on observe des valcurs decKp ligitrement supdrlcou-
res josto enl aitiotit dut chug, atissi bit-n pour It: calcul coupi5 goat poor let calcol fluidt parfait.

L' iftUaCat'Li dl a pliS all Comlpte do siliage dans le calcul coopIC est misc en hvideoce star is
figour- 7, et c aract.irisc priocipaletn par on recol de la position do chug, ieslpapr~s citoc :- vot-
stitag- do bard do muitv e atiantaatt so nivcao des points axphnimcntaom.

11 ne faot pins ici accorder one trop grande importance ia la comparaison des calculs, cffe(cto s eat
atmnsplahre illitnithe, avec 1cm rthsolrats exphrimentaox obrenos enl soofflerit, avec des parois poratuses
sitodem A 3 cordes do prof ii. Les effets det parois gui sont ici ndglig~s dans les tcalcols, empligoent pro-

F bablement le positionnemeot trop arriL-r do choc.

Les distributions sot le profil do frotteient(C9 , det l'Cpaisseor det ddplscement &att det I'Gpaisst-or
de goantird de miouvcmenre(figure 8) nous soorrent, d'ooat part one variation rapide det ct-s parsttes liti
niveao do choc, et d'autrc part goat ces distributions ddpatndenr pcu do mnaillage otllis

t
. Avant da, gi~ncts-

iiser certt reatargoat ii scrait tootatfois soultaitablt de faire des calcols cooples sor dc-s conches limitcs
plus fortement distabilisdem.

sI int si in ai irs-n

NALA hAittit M,= .854 - k = .358 - I'=

Les figures 9 a 12 pr~sentcnt 1cm pressions instarionnaires mesotics et golcol~es plot on cas sva-c
zone sopersonigoat ct nde det cauc . Les calcols sont compards sos emmais det 'i il--itn [1i4, 151 sum f igures
9 et 1o soos is forme do premier larmooiguc do inefficlatot de pression niorntslisC2 par 1'amplitaado do dO-
battment de la gouverne ( ici 6 = 1"). Ici encore ]a comparaimon 505 essais est difficilt car 1-
effets de parois sont oon-ndgligcables cotmie 1'ont montr6 a parrir det corrections semi-tspir ittatles ia-s
calculs de at>sgoiis 116].

On ratmargoers tootefois goat le calcol enl floide parfait, figore 9, differe dc-s vssatis par 1'livtn-
sird des cp instationnaires dans Ia rion travermic pot le chog.hLs prise on conipte des ph~nnmenes vii-
gocux sor le profil diminuat senmibltmatt 1' intenmsital do pic et dtc plus let dalpisca vers I 'smont, figure
1h.Ccci s'expligue facilement A partir des presslons instantanats jtr~senr&es en figure ii . hkn effat

toot comme en stationnaire, is pralmence det Is cooche limire dalacat sensiblemeor i'ondu the cling at dirsinue
* ~~son smut de pression. Toutefois 1cm presmions instationnaires restent trop importantes so droit dttctu t

cc gui impliqoc goat 1'onde det choc cat det trop forte intenmitl. Aflo det valifiet ni cetta- difarence oat
povient pas do millagt visgucox, catlol-ci a 6t6l introduit dans le code dtc calcul avec los htypntli~svs
sipr i ctrie indiqudes plum haot probablement pato restrictives, so momns pour ics failes frtjiat-og-

* redoitats. La figure 12 prisente is comparaison des calculs visgouxu avec et sans prime en COisptc dta sill;,-

instationnaires aussi bien en module go'en phtase. Toot so plus on note goat le clin sat daplaace vets. ',-I
Ia zone supersonioat cat dung plus importantt cat qui modifie lats phases sot Is Jiarti anisont dui prifil et c

entratnt otie Idgete augmentation des modules an niveso do dine. C-s diff~tonces soot attrihullat I hit
modif ication do champ stat innoalte mnyen et oat sont probabltmat pas one, cnns~goatoae det I 'alvolutt inn ins-
tatinonnairt do sillage.

Ie comporltiscot det ia phase Zi prnmimiil-t do lord do fo Ire est plus rgletsi 'n t iet itniptc
do sillage visquatox comic on le praisentat figure 12. Totefois acettat dlffc'reag- eo petit pas cot itnt-a not
mod if icat ion importante des coefficients dat pot tanate et Lie moetts cog I i Modutl en des pta sc3ions justai-

tionnairats snt faibles Ii proxiit9 do hord dut fuite Les di ffatteoces tini suabsi stcot ciii" ci- c-ss';ais d,
I I[ 14, 15a] e t I, lt I t( (Fig.llfl ) t r tc[,11,t lii paihi l t i It 1 1, lit- e, tis I IF-is ti 1'.tIi Hi ! i

i-ond thiiiriacsta -i-t i vc i t l''i it i jIi I : 1 lis tat IFtit I t 1 1 1 i'' dlas p.,I,i tax ,
a )ri 11 t la-s et Jets vit55 iu~X. MlaHwutt-tis-at ii t i rcil a -S 1 rilt It- fitt r "i -

Sniattihe tic* es pato is I fetates, i h, it Sn'adtIva- tu ciii its at I ttits i- aItaiii, i F. a-Ft- t It",
ant klii d,- mtiallr ia- ,, I taai stait iinuiai r(-.

l.a -imsirijsttt hies -tt ifitiaitIs 4,sI--tuXis h ( it i),t ti ia- ut It tIn, -tI t Ia F tit t I- -
F a'Iil.- V S qukthtitt pu 1t-i- t (.I a a t-n-ait- I . t iipi I lnp i I d I



NACA bi4 A006 C1 Cm 6  C1n6M,0 .854

k :.3S8
6i= I' Mod ule Phase Mo d ule Phase Mod ulIe Phase

Floide Parfait 3.57 - o 42.73 164* .0815 - 157'

Fluide visqueux
sans sillage 6  3.16 - 40, 1.4) 168' .0489 - )tW
Re = 2.49 10

Fluide visquoux
avec sillage6b 3.23 - 400 1.45 165' .0570 1 580

Re = 2 49 10

Cc tableau montre c lai rement- (ce qui recoopo des observations preddentos, ref.*I) ijot- si la phi-
se des coefficients globaux est peo affectie par les offers visqueux les modules soot sensiblient diffc-
rents. Par exomple on observe de 30 a 40 % de retduction sur le module do moment de charfivre cn 6 , correc -
tion non ndgligeabLe si I 'on envisage oine application ao conrr3le act if gi~n~ral isi (C.A.f;. 00 C.00.) -
On peur i6galement indiquer que lion so t roove ic i enl pril-senco d 'one cooche H imtito re laiveilteorL peut -iar-
gee. Enl effet, les paramietros de forme quo li'on prdsentera plus loin soot encore assesZ difftirViiS (IV -its
d'ono coocho limite fortement destabilisee. Dans le cas de profils plus cbargds, commle ues profils super-
critiques, on doit done s'attendre a des effets visquoux sonsiblement plus imporrants. 11 nl''it past-scIU
d 'ai I boos quo dans des cas plus sdvdros (en prdsence de deol lemeitnts) los phases cbol i-galomunt trf-s
affoordos par los effots visqocox. noP plus. si be d6oollomont s'6tend ao delA do bord do fulto on no iotirra

pas Ignorer Ie em ffers visquicos dans le sill age. Frn offor, It,-c oiport oment do In t Cot dc- I I Lo -I Vv

do prof 11 do it alors jolier tin i~lo I K-; Important dans la d~rerminat ion dii thira) tlt, pitts ills iiist-i

It jolt s tat iotila i ra (-LLL' i nst ar I inna ires.

Cons idLi'rols ma int LnalirL plIus pi rt jell it Irt-nntttil I il ill I.s
parami-t ris de c ochi, 1 i mi to I-- an s lea re!gions oil levs e ffe ts ib11 1i mat roIs(s til t f aiti1-t. ml itat

quo los grandeurs do couctie limite varient, en one abseisso donnie, do faion sinosoidaleoen fonoction
do temps, mai s avoc, d 'one part, oin dephasage, fonlt ttill do i 'abso sine, par rapport au mtiovoeLt d( it oU-
verne er d' aurre part, oin didptiasage enre los grandours vi sqocusos oclles-monies. Lee i est i I Ulostri par
Ia figure- 13, oii noos tivons tracS 1'1V t iOttli sor Line pdriode do parami. e do fotrme Hit Vti d ' I'al t r
do depiacement 6* , au bord de- flu to. Par eottltro, cot t 111111 ftigore tolls fai t etilimteir qui- I'lvIi i 111
do Hi et 5, dans la rd gioit ou so dieplace lei tioc , ii -st plus sinusoTdale. Ceci i-st prttabieeiii tit, (n-
sequence ties phtlnones lnon-i in-ai res lans cot to rogio Ottetmporrallt notamtont I :ip-)i it iiitl it II ai sitari -
t ion do coo 1t I 'abs-is so considertie, La ci mparaimoi ties figores I1 Iet I 3 Iilltr- qoi- A1 e agunlLL-t
for ot Si mesure qoi- IV oboe so titpl ace vers I' aMitr, elt Si- raiiirii-tattt dui poitit considtlr(, iJ55i'Tlt par till
iltaximiln quand le eboc atteint ce poinrt, poi s diecroisseilt tu fur it :i mesone qu t- i iho s'it-luiigne, vets

'omont er disparatt.

Li-s distri r ittns Hx I tititteins itistaita stilt rvipros-otlo- sor IL iini- I-I. TI
raison aver los Op instalitillis (figure 11) flit ti i-videiie Ia variat ion rapit- de H. -1t '1 iti !1It -
Id aut-tot plus rapido quo i 'intensi tC dui ch toe it vIVe) it one! variatitt u-intti nsu )It-i i-,1j CL li-git-
li tre ein I 'absence do i-bite ( t t= 180)L.Um rotrtitve egaimittir iuc tir' s ii- tejliig IC; tkIhi. , c1'1itit 1,i
I '.ibsL i sine dmns i ' etIlotion ie H, sot Litne teinde dui nhutitvmetit de- gotirltt-

CO N):LIUS IO NS

to rnli-is ptouir Li ri-sit Iut io t ilt ,- I 'i-quit iotil des pot i t s petturbtt~ ions t rilis-tIii u-s -I 1 its lit L.1111t.1 t 1 1.



-Ixe caiu I, n~i U I cuIv Ip mii S ide gi-itrer Ivs I, iamlps de s 1) rV SS i I SStait ti 1111 I' iS t(cililit! IL it Ve .11

t rans i toi rc V t us t it i tia i rvi SUL Ln pi tit i I NACA lAI)lhi' i,([i d 1' Itne IO vrneit, Lit an te enl silisolitit
e t t ransson i UV

- L, comart i sin t1VicVS I I-IU Is Ivec It, I I uid, part i t a liermis de 1s.t t rV I'n vidice I ,impljor t '1in
des VfttS V Lsq(UVuX SUr Ic pr otfi I it daits Iv s i 1 Iage . ii regime trmts sonin i(I.I aiiis it i onld ,I' IdII
et Soil intenlSiti sembietit trels setisibles Il Ia pri se vin comlptc ust eit s visqueux.

- La pr i Soeli coniptC dIVS etIfetS V vSqCIiux va b i i datis Ic eSens d 'un m i IlI.,ur a( lord i I- iSs. xix

Ce tte ansl iorat ioni toutc uLAIilittiv cStil i gilt IU behiln de'LS 'aS exemp~ts d'keffct det pIroiS I ji or IL'

mittts d'essais erltre parois p)Icm-BS LIt' ii St.rat t donc p...ssibIic dc trai ter de mittantri rigilurcutt~ ditS
calcul.

- L., prise en iimpte des,,! lets viSijuvux rciinit notabientent IVS modules11V des ireionlis instaion
niaires dalS Ia reg3ion balay-i pat IVc hC10,C~ cti i'st cit bolt ICCOrd IVcC lt's observat ionis isxhriiti s.

- La priSVen ciiempt, dies lettets visqjuVLI VSt tint part icol iiremetit Senib~lle stir 1c Lill 1i I 0i1 -

tlcilt Il chainLr,, hi n qit cc I i-i i daits IL' cas Conis i deirtict~ siit pats sons, i i ti in di rce t. IL b11

-AS Stii eCJ aS iOiSiill'iS onl a pti 11)iitrer Line It- caicu IUItuIAc) Skt~i i'Vl SVIi~ii a1 1 1 1

DV-11 1s iI iS L 1t'1.t1ille n1tiireS sStllt to LU toi S Sinilta it Zbles pour v r if i Vr S i ICit tV oc I Si i ri s teL viiIit I l,
't~riledu diiCol leittent ott pour des tntvrat toils oLinde c l-11oncClicI! I Ui itC]) pUS Si-v I-S.

L! iS ;I'Sibi itus d',tnidrv le ,oli~g" tort par uti I isatilit dunkieithtid ill'crSv o s, mutl-ic-

diVsCUit etrce tudides afiit de ponVoLi r traiiter des CciniUettlintsl avec- dicol lIcilts.

11I - LISltIN Mo, ANGFLIAI JJ,. et MULAK P, Atppl icit iotn dc I 'equation des pen't tes pvrtitriat iot. tIis
niquelt aux ca lenis d t coulemits Itid imens i ontil s ins titiiitnti ri's, Rici. .A,-roispiNu I 9;1)-f ( iI. i

1,. 125-340.

12 - OlUSTON M. Land ANGELIN I J J, SoIlut i oit o f nons tvady twit-d imcns i oIAl trattsoiti c sma~t I I(I i st itrbini.ties
Potent ial f low equat ion. conuni ca tion an Symios i um sur I a dynamique de s fItuti des inis tait ittitat rets
ASME-San Fran- i scn 10-i 15 IDcembrL I9 978 e t ASMI2 Jarita o ff I i ils engi neer ing VoIi . 10ll , No I , I I

pp, 341-347.
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EXPERIMENTAL FLUTTER AT HIGH SUBSONIC SPEEDS AND
ITS THEORETICAL PREDICTION, TAKING INTO ACCOUNT

WING THICKNESS AND REYNOLDS NUMBERI

H . C. (Garner
Royal Aircrift Fstahlishment, Structures Depairtment

Farnborough, Hampshire, GU14 6TD, England

and
B. W. Payne

British Aerospace, Aircraft Group
Weybridge/Bristol Division, Weybridge, England

with
Appendix by J. C. A. Baldock

Royal Aircraft Establishment, Structures Department
"The Reason for the Large Increase in

Critical Flutter Speed with Mach Number"

SUMMARY

Half-model flutter test- of a symmetrical high-aspect-ratio win(; t t Y-P

numbers M between 0.75 and 90 are described. Equivalent air speeds at ' er,

calculated with aerodynamics from subsonic liftinq-surface theory, are in tiri, i
agreement with the measured values up to M = 0.86. In the range 0.86 , X
measured flutter speed increases rapidly until the flow is stable, contrary' to t:,, ;re-
dictions with the linear theoretical aerodynamics. However, the use of approxiiate
theories compatible with steady and quasi-steady aerodynamics from transonic srat] T(r-
turbation (TSP) theory loa' , to the correct qualitative behaviour of flutter seci. 'it
inviscid TSP aerodynamics the rapid rise in flutter speed is anticipated Ly aleut i IT.
M , but allowance for the l-unJary layers is shown to halve this discrepanc y. The r, st
crucial aerodynamic force coefficient is identified and its behaviour and influence are
analysed. Further calculations illustrate the effects of mean incidence and Ren lids
number on flutter speed. Tyrical chances in the oscillatorv aerodynamic iload distribu-
tion are discussed.

LIST OF SYMBOLS

A structural inertia matrix

b determinant of scaled matrix B (see Appendix)

B, C aerodynamic damping matrix, aerodynamic stiffness matrix

c(n) local chord of wing

c geometric wing chord

CIII c22 scaled elements of matrix C (see Appendix)

C L  steady lift/( o U
2
S)

C p() steady pressure coefficient (p - p)/( ,U U2

C' + iC" ; oscillatory pressure coefficient in Eq. (1)Cpp

Cp0 P mean pressure coefficient Cp(, 0

E structural stiffness matrix

f frequency of oscillation (Hz)

F ratio in Eq. (3)

G local mean flow parameter in Eq. (6)

R complex quantity in Eq. (4) from linear theory

M stream Mach number

p air pressure

q column matrix of complex displacements

o complex aerodynamic force matrix in Eq. (14)

Oi0 2 force matrices in Eq. (12)

0
ij Qj - IUQij ; generalized force coefficient in 1q. ()

R Reynolds number u-c/

.0 real part of

s semi-span of wing

S area of wing planfrm

t t ime

T, T' transform;tion m, frix .ind it t rt ;

I' -stagiqrt in, tempe,(rit ure t'

air sIeed

" ,,. I li , 'nt a ir s ,'d in , . II



LIST OF SYMBOLS (concluded)

x ordinate in streamwise direction

xa position of aerodynamic centre

x (I) local ordinate of leading edge

y spanwise distance from centre line; see also the Appendix

z downward vertical displacement

incidence of wing (radians, unless otherwise stated)

0 mean value of

I1 amplitude of pitching oscillation (radians)

ratio of specific heats of air (= 1.4)

Fq, 7 loadingt functions (see Ref 7)

_11C p C .- C pu;steady loading coefficient

AC .C' + ii. C ; oscillatory loading coefficient in P~i. (II

local displacement ir. nose-up pitch about flexural axis

-kinematic viscosity of air

frequency parameter C/U

non-dimensional chordwise distan.-e in Eq. (8)

'ac ") position of local aerodynamic centre

air densicy

standard air density at sea level

a density ratio J 0
'I, complex oscillatory velocity potential on wing surfaceIcircular freguency of iscillation 2-f; proportional quantity in the Appendix

0 subscript denoting mean flow at =

qubs,-itpt denoting undisturbed stream

c subscript denoting unmatched calculation

IF subscript denoting matched flutter condition

i subscript denoting force mode

subscript denoting mode of oscillation

subscript denoting lower surface

11 suibscript denoting upper surface

lin subscr pt denoti1ng linearized theory,

I I NTRi)DUC(TION

The prediction of Flutter boundaries in the transonic- speed range suffers from
inadequacy of aerodynamic data in several respects. In the first p1 act., the complete)y
linearized data from subsonic oscillatory liftino-surface or doublet-lattice theory
become increasinglly suspect as the onset of supercritical flow is approached. Theii
defects are apparent from the evidence of two-dimensional tranlorlic t heo~rv. A 000

cons iderat ion, which can o)nly be transitory, is the noni-ava ilab i I ity of a qener Il met> .1
of solving the three-dimensional equations of unste oiy transon ic, flow. Tho presecot ma k':
explores the results of flutter prodict Ions based on approx ima to thiree-dimen soaa me 011-l!

A third impor ta., t fact,)* is thle in ft ence, of the borunI i ry I tyer . AS MiO' work erlhi
pointed out, to include t he effects of win ; t li knc s witho, it t hose; -l t I e m
may improve the goal itative I ,o r f the pressoutt listi ub'ut Ion whilet the ler~ili' 1 i
for:e coefficients may bome cr ej ro'sentaIti"( i fre Ii flow. Il( lie ' x Ii Xi"I I
thuoretical methods can incor-p oto' l-und ary-l Iyt'i .. ft.'t on a quai Iste"adval~

thait some account if Reynls I, -I-i will Ife I Ae. r t 1.,"n s p I a t io n Is tlt
influence of the mean flow on it - r dy)''1-r- Ir Ix p.I Ii'e mac niniit III I
f req(Iu enc y pa Iramet e r, wh11ile te jett1, 1,irI I i IiS Ii I I -1w I t-e)1 I I mol I) Ir. '
cliaracto2ristic will i,(e I lust r 0 -I in t1.-p 0.,!1 1 lit If I sp(10 Is I Iun0 I, f
me'n- incidence.
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It should not be assuir"'i that the present results are typical of modern wings
designed for supercritic.l '. The essence of the experiment is its simplicity. The
planform is uncranked, t ('- I section is symmetrical and uniform, and the model was
tested at zero lift. W e cxperiment was designed to produce flutter and to provide
a straightforward test uf t.. ical methods, the flutter actually disappears at the top
end of the Mach number range. r',refore, special interest attaches to the ability to
predict this disappearance by the available theoretical means.

2 WIND-TUNNEL FLUTTER TEST

The experimental programme stemmed from a proposal to design, build and test a wing
model to help to assess the accuracy of flutter predictive methods at high subsonic speed.
The model was designed for testing in the RAE 8 ft x 8 ft Tunnel at Bedford, and as this
was to be the first test in this tunnel of a flutter model, particular care was taken to
reduce the possibility of model failure which could damage the tunnel compressor blades.
Static and fatigue loads were given careful consideration and the decision taken to use
mainly fast-frequency-sweep testing, to reduce test time, instead of the discrete-
frequency method customary at that time. Ref 1 discusses the model design and testing
and Ref 2 the theoretical studies and analysis of the wind-tunnel results.

2.1 Design of Model

The model was designed, in the first place, as a simple representation of the port
half of a high-aspect-ratio clean wing, designed for a BAe rear-engined project. The
simplifications included the use of straight leading and trailing edges, no camber and a
constant streamwise NACA 64A010 section (see Fig 1). Stiffnesses were scaled so that a
flutter speed could be found within the tunnel operating limits and within the Mach
number range 0.75 to 0.90.

The design finally used was based on a single box spar centred at 40% chord which
provided the majority of the bending and torsional stiffness of the model. The external
shape of the wing was achieved by shaping balsa wood glued to the spar with fibreglass
strengthening. The spar root terminated in a solid block which was mounted on a two-
flexure support system which allowed the wing to pitch. Excitation was applied to the
root block through an electro-magnetic vibrator. The wing projected through a fixed non-
representative body provided to contain the support and excitation system and to achieve
suitable flow in the tunnel test.

The tests described were all carried out at zero mean incidence, but there remains

the possibility of further tests at small incidence.

2.2 Bench Tests

Throughout the manufacture period, bench tests were carried out in order to test
the structural data to be incorporated in the mathematical mode] to be used for the
flutter predictions.

The spar was bench tested before the addition of fibreglass and balsa cladding.
Both bending and torsional stiffness tests were carried out, followed by resonance tests,
and small adjustments made to the data calculated from the drawings. On completion of
the model, further stiffness and resonance tests were carried out. Structural influence
coefficients were measured over a grid of 45 points (9 x 5) used for both load applica-
ion and deflection measurement. Resonance tests were conducted with the model mounted in
the support rig, which was itself attached to a massive bench structure, and the first
five normal modes of the model were measured together with the pitch mode on the root
mounting block. Final adjustments were then made to the structural mathematical model.

The overall changes made from both the spar tests and the complete model tests wereas follows:

All mass data factored by 1.20

Bending stiffness factored by 0.90

Torsional stiffness factored by 1.20 .

Measured modes are shown in Fig 2 and the calculated modes obtained by using the empirical
factors are shown in Fig 3. Modal frequencies are listed in Table 1.

2.3 Wind-Tunnel Test Procedures

The wind-tunnel tests took place at Bedford in May 1976, and covered the Mach number
range 0.75 to 0.90. Model response was measured by flexure strain gauges mounted on the
model at the root and at 60% span. At first results were obtained from automated analysis
of fast frequency sweeps with the aid of fast Fourier transform techniques, although some
spot checks were made by using response at discrete frequencies together with vector-plot
techniques. It was found, however, that the lowly-damped root-mounting-block pitch mode,
excited by tunnel turbulence, dominated the response throughout the sweep, thereby reduc-
ing considerably the levels at which the model mode responses could be recorded. The
response of the model to tunnel noise alone was also recorded at each stagnation pressure,
and it was found that, although the root-mounting-block response again dominated the
signal, those signals contained adequate definition to permit analysis. This change in
excitation allowed some additional tests with the mounting block rigidly locked.
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2.4 Wind-Tunnel Test Results

A list of the Mach numbers at which tests were carried out together with the
inferred flutter speeds and frequencies is given in Table 2. Typical plots of experimen-
tal modal critical damping ratio, 4 , and frequency, f , versus airspeed are shown in
Fig 4 for a Mach number of 0.803. Two roots are traced over the speed range tested, and
root I is seen to be approaching flutter at an extrapolated speed of 278 m/s.

Tests showed clearly that the effect of the mounting-block freedom was negligible
and results for both conditions of mounting block, free and locked, are plotted together
in Fig 5, in which the variations of flutter speed and frequency with Mach number are
shown. The sudden upturn in both critical speed and frequency is seen in the Mach number
range between 0.87 and 0.89.

3 THEORETICAL AERODYNAMICS

In past decades flutter prediction has relied increasingly on the completely
linearized aerodynamics of the lifting-surface or doublet- attice methods. In the
present investigation the lifting-surface theory of Daviesl has been used. In industrial
applications it has been common practice to make allowance for aerofoil section, boundary
layers and other effects not represented in the theory, by applying empirical factors,
based on wind-tunnel or flight experience, to the force coefficients. Empirical correc-
tions of this kind stand a reasonable chance of success when the qualitative changes
between the calculated and the real load distributions are minor ones. At high speeds,
however, this is no longer the case.

From two-dimensional considerations it is apparent that, with the development of
local supersonic regions and eventually shock waves, transonic flow introduces major
changes in the character of the steady aerodynamic loading. The consequences for the
oscillatory aerodynamic loading are even greater. The topic has been reviewed by
Tijdeman4 , and Fig 10.7 of Ref 4 illustrates the large effects on the incremental
pressure distribution due to a change of incidence mainly on account of the displacement
of a well-developed shock wave. An example of the measured frequency effect on the
oscillatory pressure distribution is given in Fig 10.11 of Ref 4, and this is a further
illustration of the deficiencies of linear flat-plate theory. Theoretical progress in
unsteady two-dimensional transonic flow is reviewed in Part IV of Ref 4, where Fig 13.5
makes the point that inviscid transonic theory can introduce qualitative improvement at
the expense of large guantitative inaccuracy. By theoretical allowance for the boundary
layer and by correction of the experimental results for wall interference the agreement
between them is improved considerably. Viscous effects can be expected to grow rapidly
as transonic conditions develop and to influence the location of shock waves. Empirical
factors to the force coefficients are unlikely to succeed in this flow regime.

It cannot even be said that there is an available method for solving the equations
of inviscid threg-dimensional unsteady transonic flow. There is a pilot program by
Weatherill et al , which has been run for a rectangular wing in pitching oscillation, and
it can only be a matter of time and costly effort before there will emerge a general
method for solving a finite-difference approximation to the transonic-small-perturbation
equations for oscillatory flows past finite wings. In the interim there is a place for
approximate methods, two of which are used in the present investigation. One Is an
adaptation of strip theory to be considered in Section 4.3. The other, to be discussed
in Sections 3.1 and 3.2, has been described in Refs 6 and 7.

3.1 Description of Theory

The basic equations of the approximate method are derived in Ref 6. The underlying
principles and the key equations are summarized in Section 3 of Ref 7. The local pressure
coefficient is expressed as

C = (p - p2)/i 2 ) = Cp0 + A Ceit , (1)

where p., p and U are the pressure, density and velocity of the undisturbed stream,
Cp0 corresponds to the mean flow and w is the circular frequency of oscillation. It is

sufficient here to say:

(i) that a one-dimensional form of Bernoulli's equation is used to relate the local
values of the oscillatory pressure coefficient Cp , the mean value Cp0  , the

complex oscillatory velocity potential (x,y) and its derivative a/x ;

(ii) that the ratio of SI/ax to its value as frequency tends to zero is set equal to
the corresponding ratio from linear theory 3 ;

(iii) that the ratio of the quasi-steady rate of change of surface pressure to the corres-
ponding quantity from linear theory is assumed to be the same for each mode of
deformation, so as to equal the ratio for the mode of rigid pitching calculated with
the aid of steady pressure distributions over a range of incidence covering the mean
flow condition.

The final expression for the oscillatory part of the pressure coefficient at a given
section of y = ns is
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F(' )(')U.
(t) F( ) + ivc(n)G( G(,)U0 (,) dt , (2)

(aC p/aa)a=a0 (from steady data)
where F( ) -0(3)

a(Ac p)/a (from linear theory)

41 ~in
( = U-T n for the upper surface , (4)

V = wc/U is the frequency parameter , (5)

G( ) = I + YM 2C , (6)

U = U_ 1 2 + -YM 2 , (E) (7)

= Ix - xL(n)]/c(n) , (8)

and other basic quantities are defined in the List of Symbols.

The approximate method has achieved sufficient success in reproducing supercritical
experimental pressure distributions to justify its application to the present flutter
problem. As described briefly in Section 5 of Ref 7, the method has been programmed so
that different modes, frequencies and mean incidences can be handled in the same calcula-
tion. Although the running time is relatively short, a lot of preliminary effort is
needed in preparing the PLATEDATA and WINGDATA files.

The PLATEDATA file contains the results of previous calculations from lifting-
surface theory for the appropriate modes, frequencies and Mach number.3 In the present
work there has been a slight complication in that the method of Davies is used in place
of Ref 8. An extra program has been written to convert the pressures at the loading
points into the quantities F and q required in equations (18) and (20) of Ref 7,q q
which determine the respective quantities 3(6C )/ a ir Eq. (3) and K() in Eq. (4). A

p
further complication has arisen in the representation of modal data. The PLATEDATA files
for the present work comprise the values of F for steady flow at a uniform incidenceq
and for each value of the frequency parameter U the values of the real and imaginary
parts of T for the following eight modes:q

- = .2m(x/Z)n (m=0,1,2,3 and n=0,1) (9)

The program is then run to give the generalized force coefficients as a pair of 8 8
matrices corresponding to the real and imaginary parts of

j 2Sc (- z ) (AC) dS , (10)

where zi is the downw ,rd vertical displacement from Eq. (9) for the appropriate mode

and (AZ) is the complex loading for the appropriate mode of oscillation z = zj when
Pii

the surface pressure coefficients CPU and Cp, defined as in Eq. (1) are differenced
pu-to give
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A-p p Cpu AC + iAC" . (11)

A 5 x 8 matrix T, is formed to express each of the first five flexible modes of the
flutter model to a sufficient approximation as a linear combination of the eight modes in
Eq. (9). Then, if 0 denotes either of the 8 x 8 matrices, the required matrix for the
flutter calculation A

Q2 = T O1T (12)

where T is the transpose of T'

The WINGDATA file contains the steady-state data, either theoretical or experimen-
tal, at the given Mach number for an appropriate set of incidences. In the calculations
of Ref 7 the choice lay between an early version of the transonic-small-perturbation
(TSP) method for isolated wings and measured static pressures on the dind-tunnel model
concerned. In the present investigation a later version of the TSP method is used, which
incorporates two important new developments. The first, not relevant to the investiga-
tion, is the extension to treat wing-body combinations developed by Albone et at . The
second to be discussed in Section 3.2, is the allowance for boundary layers due to
Firmin 0 . Thus the inviscid steady flows for the isolated wing can be calculated with
improved accuracy, and it is no longer necessary to have detailed experimental pressure
plotting in order to represent viscous transonic flow in the WINGDATA file. Moreover,
the effect of Reynolds number can be considered.

The present applications of the program of Ref 7 to the flutter model of Fig 1
cover Mach numbers and frequency parameters in the ranges 0.80 4 M < 0.89 and
0 < U < 0.855. Figs 6 and 7 illustrate the effects of these parameters on the inviscid
oscillatory chordwise loading at an outboard station n = 0.809 , when the wing at zero
mean incidence is pitching about the axis through the root leading edge. With reference
to Eq. (11) the distributions of AC /fI and AC"/p/(a I  ) are plotted, where a is

amplitude of oscillation in radians. In Fig 6 both distributions depart further and
further from typical subsonic shapes as M increases from 0.80 to 0.88 and Z is fixed
at 0.428. As the shock wave develops in strength and moves aft with increasing M , so
do the peaks until, at M_ = 0.88 , AC,/a I reaches about 70 and AC"/(a I U) reaches

about 100. At the higher stream Mach numbers of 0.885 and 0.89 the peak values are still
large but decreasing; the evidence suggests that, although the shock wave continues to
strengthen slightly and move aft, its smaller rate of movement with respect to a
accounts for the falling peak values with increasing M.,

The effect of frequency parameter, illustrated for M = 0.86 in Fig 7, stems
primarily from the lifting-surface calculations of Ref 3. he high aspect ratio of the
wing is responsible for large changes while the frequency parameter is fairly small,
especially in AC"/(a Z) It looks as if the trends in both the real and imaginaryp 1
quantities with increasing have reversed over the forward part of the chord between

= 0 and U = 0.855 . It is likely that the results for this highest frequency para-
meter suffer in accuracy because no account is taken of the decreasing shock-wave motion
as frequency increases. But the frequency effects outside the shock-wave region should
be realistic.

3.2 Effect of Boundary Layers

In the present investigation the TSP method of Ref 10 is used for both inviscid and
viscous steady flows. The inviscid TSP calculations are more reliable than those used in
Ref 7 on account of an improved relaxation scheme for solving the finite-difference
equations of the flow field. The viscous TSP calculations allow for the boundary layers
by modifications to the boundary conditions near the wing and wake. The modifications
are introduced into the iterative scheme in steps as the calculation proceeds, but after
each revision of the boundary-layer development the changes in boundary condition need to
be under-relaxed to achieve convergence in the pressure distribution.

At the outset it is necessary to prescribe the location of transition from laminar
to turbulent flow. The laminar or turbulent boundary layer is calculated from an attach-
ment line. For use in the region between the transition front and he trailing edge the
lag-entrainment method of Green et aZ'1 has been extended by Smith to three-dimensional
flow. Firmin1 0 makes a further extension of the turbulent-boundary-layer method to
calculate the wake.

There is no question that boundary-layer effects are important. Ref 10 allows for
these reasonably well provided that the shock waves are not too strong and that the
boundary layers remain attached. There are residual uncertainties about the accuracy of
the boundary-layer theory in the region of any shock-wave boundary-layer interaction and
as the trailing edge is approached. Moreover, the treatment of the wake does not allow
for the strong vorticity near the wing tips or any subsequent rolling up into discrete
trailing vortices. But, judged from the comparisons with experimental pressure distri-
butions in Ref 10, the method has achieved a satisfactory measure of success.

Although there is little understanding of unsteady boundary layers in transonic
flow, it is feasible now to allow for Reynolds number in three-dimensional steady flow
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subject to the transonic-small-perturbation approximation. Hence, by numerical differen-
tiation with respect to incidence, the quasi-steady effect of the boundary layers can be
calculated and used in the method of Ref 7. The primary effect is on F( ) in Eq. (3)
through the quantity Cp / a at a = ao I but through their dependence on C both

G() and U0 ( ) in Eqs. (6) and (7) are also changed by the boundary layers. All three
functions influence C in Eq. (2) and thereby the generalized forces in Eqs. (10) and (11).

p

The results in Figs 8 to 10 illustrate the character and magnitude of the viscous
effects. In Fig 8 the lift slope CL /3a and aerodynamic centre xac are calculated

f-om the inviscid TSP solutions and are compared with the linear theoretical values for
stream Mach numbers between 0.80 and 0.89. The effect of the 10% thick aerofoil section
on C L/3a increases from 13% at M. = 0.80 to 27% at M. = 0.875, above which the percen

tage falls. The rearward shift in aerodynamic centre due to aerofoil thickness increases
from 0.02E to 0.18E as M increases over the range.6 The influence of the boundary
layers at the wind-tunnel'Reynolds number of 3.4 x 106 with transition at 5% chord is
shown in the range 0.86 4 M 4 0.885. The loss in lift slope due to viscous effects is
seen to increase with increasing M until it exceeds the large increase due to aerofoil
section. The aerodynamic centre is found to lie somewhat closer to inviscid TSP theory
than to linear theory. For M = 0.86 an extra calculation is made for a typical full-

scale Reynolds number of 3.5 x 107 with transition still at 5% chord, and the results for
both 3CL/ac and x ac/ lie roughly midway between those for R = 3.4 x 1 0 6 and for
inviscid flow.

Fig 9 shows the symmetrical steady pressure distribution at M_ = 0.88 when a = 0
and the quasi-steady lower-surface distribution

acpt/3a = - 3Cpu/Da when a0 = 0

for sections inboard at n = 0.210 and outboard at n = 0.809 . The curves derived from
the viscous TSP solutions for R = 3.4 x 106 are compared with those from inviscid TSP
solutions and from linear theory which gives - Cp0 = 0 . The TSP curves all show the

expected qualitative changes from the distributions given by linear theory. The behaviour
of ac p/aDa and the peaks associated with shock-wave movement are of primary importance

as regards the calculations of oscillatory pressure. The inclusion of the boundary layer
is seen to spread the recompression near the shock wave and to halve the peaks in
ac p/a at both sections. The shock wave is distinctly stronger at the outer section,

which is the more important in relation to flutter.

For most of the stream conditions considered, the TSP solutions are carried out for
only three incidences a = 0, kO and 10 . Because of the symmetry of the aerofoil
section these provide values of C (and Cpu ) for the five incidences

a = -1 , - 0, 0, ko and 1
° 

, from which to evaluate DC p/aa (and C pu/aa ). In the

particular case of inviscid flow at M= = 0.86 additional solutions are obtained for

a = lho, 20, 2 0 and 30 , so that the effect of mean incidence can be studied. It is
interesting in Fig 10 to compare the relative effects of the changes from inviscid to
viscous flow and from a0 = 0 to a0 = 20 . The chordwise distributions of the real and

imaginary parts of the oscillatory loading at n = 0.809 due to pitching motion about
the axis through the root leading edge at = 0.428 show contrasting changes. The
effect of viscosity is to weaken the peaks near midchord and to displace them upstream,
while the increase in mean incidence from 0 to 20 strengthens the peaks and displaces
them downstream. The consequences for flutter are surprising and will be discussed in
Section 4.5.

4 FLUTTER CALCULATIONS

The wind-tunnel flutter test, described in Section 2, has yielded the experimental
values of the equivalent air speed at flutter in Table 2 for the range of stream Mach
number from 0.75 to 0.90. The aerodynamic theory, outlined in Section 3, is used to
provide matrices of generalized force coefficients for the five modes included in Table 1.
The solution of the flutter equations is discussed in Section 4.1.

The selection of flow conditions for the calculations is considered in Section 4.2.
The primary aim is to evaluate the influence of the boundary layers on flutter speed at
the Reynolds number of the experiment. A further objective is to examine the scale
effect in increasing this Reynolds number to a value typical of full scale. As the
flutter testing was all at zero mean incidence and there is the possibility of conducting
further tests at small non-zero values of mean incidence 00 , a subsidiary aim Is to

assess the importance of a0 as a flutter parameter.

Section 4.3 concerns the use of the three-dimensional TSP solutions in conjunction
with strip theory as an alternative to Ref 7. The comparisons and discussion of the
flutter characteristics follow in Sections 4.4 and 4.5.
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4.1 Method of Analysis

The flutter equation to be solved is

A4 + p U Bj + oU Cq + Eq = 0 , (13)

where A is the structural inertia matrix and E is the structural stiffness matrix for
the first five flexible modes discussed in Section 2.2. The complex generalized force
coefficients are first calculated as in Eq. (10) and are then transformed through Eq. (12)
to a complex 5 x 5 matrix Q . The aerodynamic damping matrix B and the aerodynamic
stiZfness matrix C for prescribed values of M and are given by

scQ = C + iB . (14)

The complex column matrix q represents the magnitudes and phases of oscillatory
displacements in the five modes with frequency

f = U /(2w) . (15)

A flutter condition occurs when Eq. (13) is satisfied for an undamped root with compatible
values of the frequency parameter U and the stream density p. , velocity U , Mach
number D and stagnation temperature T 0

In the present analysis U is matched to the given wind-tunnel value of
To  (= 298 K) and the prescribed value of M used to obtain the aerodynamic force
matricee in Eq. (14). Than, for the prescrited value of , the density p. and hence
the equivalent air speed

Vc = U/(p/p 0) , (16)

where p0 is the standard air density at sea level, is increased until at p. = pc I say,

Eq. (13) gives an undamped root of frequency fc F say. If fc exists, the corresponding

frequency parameter vc is then calculated from Eq. (15) and will, in general, be found

to differ from the assumed frequency parameter U . A matched critical flutter condition
is obtained when

vc = V = V say. (17)

A simple graphical procedure is used to determine this condition, the corresponding
density pc = pf and hence the equivalent air speed at flutter

Vf = U./Pf/P 0  (18)

It is found that the most influential modes are fundamental bending (37 Hz) and
fundamental torsion (326 Hz) designated as modes 1 and 4 in Table 1, while flutter was
measured at about ; = 0.4 (90 Hz) . Aerodynamic force matrices (C + iUB) for these two
modes with M = 0.88 and -, = 0.428 are illustrated in Table 3. There are large varia-
tions betweeA the calculated results

(a) from linear theory (Ref 3),
(b) by using Ref 7 with inviscid TSP data,
(c) by using Ref 7 with viscous TSP data.

The predicted values of Vf for M. 0.88 vary widely from YiO m/s with (a) to a value

in excess of 400 m/s with (b). As the matrices seem to indicate, the viscous case (c) is
found to give an intermediate flutter speed Vf = 326 m/s . The Appendix shows how a

simplified binary analysis in terms of modes 1 and 4 can elicit the dominant aerodynamic
influences.

4.2 Results

The range of the stream conditions in the present calculations is indicated in
Fig 8. Lifting-surface calculations by the method of Ref 3 hav- been made for
M. 0.80, 0.84, 0.86, 0.88, 0.885 and 0.89 for various frequency parameters in the range
0 4 v 0.855, the particular value 4 = 0.428 being used for each M as it is close
to the expected value at flutter. Table 4a gives the critical flutter'speeds Vf and

frequency parameters Uf from the calculatioa6 with liffing-surface aerodynamics at

selected Mach numbers including M_ - 0.75 from the earlier calculations of Ref 2. It is
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only above M = 0.86 that the trends in themeasured flutter speed in Table 2 become very
different from the monotonic behaviour, a decrease as M. increases, shown by these
preliminary calculations.

The inviscid TSP calculations for a = 0, ho and 1°  have been made for each of the
six values of M from 0.80 to 0.89. Table 4b shows that the flutter calculations for
zero mean incidence based on inviscid TSP aerodynamics yield no flutter in the range of
the experiments at M = 0.88 1 nor is it found at M = 0.885 and 0.89. The viscous TSP
calculations for the ;ind-tunnel Reynolds number R = 3.4 x 106 are confined to
M - 0.86, 0.88 and 0.885 . This is the region of greatest interest, where the shock
waves are well-developed and their locations are influenced by boundary-layer growth. The
corresponding flutter calculations in Table 4b give a critical equivalent air speed at
M = 0.88 , but it has disappeared out of range at M. = 0.885 . An analysis of these
results is made in Section 4.4.

To extend the information on boundary-layer effects, a further calculation with
viscous T ;P aerodynamics has been carried out for M = 0.86 at the Reynolds number

3.5 x 107 typical of full scale. Predictably this gives a flutter speed in Table 4b

intermediate to those for R = 3.4 x 106 and for inviscid flow. Also for M = 0.86
the steady inviscid TSP solutions are extended to a = 1ho, 20, 2h0 and 30 t; provide
aerodynamic data for flutter calculations when the mean incidence is varied in the range
0 s a0 < 20 . The surprising result in Table 4b is that the equivalent air speed at

flutter goes outside the experimental range as a0 is increased from 1 ° to 20. The

effects of Reynolds number and mean incidence are discussed further in Section 4.5.

4.3 Strip-Theory Analysis

The TSP calculations, which form the basis of the Ref 7 approach, produce as a by-
product spanwise lift and moment distributions due to rigid incidence. This information
has been used to form simplified-strip-theory in-phase lift and moment flutter deriva-
tives, along the span, and by means of Ref 13 to obtain the corresponding out-of-phase
derivatives. Flutter calculations were carried out for comparison with the Ref 7
results and the experimental values.

Results of the calculations for zero mean incidence are listed in Table 4c and are
shown plotted in Fig 11. The derivatives from the inviscid flow give the curve shown as
a full line, whose shape is influenced by an upper flutter point for M = 0.86 . This
shape of curve is also apparent for the viscous case, in which no fluttgr instability was
calculated for M = 0.88 . Strip theory is seen to predict successfully the upturn in
flutter speed witK Mach number, but the estimation of flutter speeds at lower Mach
numbers is seen to be low by approximately 15%. This mis-match is partially explained by
the over-estimation of the aerodynamic forces as a result of using the rigid incidence
load gradings from the steady TSP data. The estimation of flutter frequency is in error
by some 50%, but improvements in the out-of-phase derivatives can reduce this error.

The flutter trends are better indicated by the local aerodynamic centre ac(n) than

by the overall quantity xac/ in Fig 8. The upper diagram of Fig 12 shows a strong

early influence of supercritical flow on &a over the inner part of the wing, while the
strong influence over the outer part is considerably delayed in Mach number. The inboard
values of tac have the greater effect on Xac/e , but it is the rearward shift outboard
that first deters and finally precludes flutter. Study of the lower diagram of Fig 12
therefore explains the adverse effect of viscosity on flutter in the present investigation
and suggests that an increase in mean incidence may be favourable.

4.4 Comparison with Experiment

The experimental results in Table 2 comprise equivalent air speed Vf and frequency

of oscillation ff at critical flutter conditions. In the calculations the primary

objective is to predict Vf . The quantity ff is derived in the process and provides a
secondary check.

The curve of Vf drawn as a full line in Fig 13, calculated with completely

linearized theoretical aerodynamics, shows two characteristic differences when compared
with the experimental data. Up to M = 0.85 the downward theoretical trend is too
small, while above M = 0.87 the sage gentle trend continues where a steep increase in
flutter speed has been measured. The remaining points in Fig 13 are taken from Table 4b
and correspond to aerodynamics based on Ref 7 as described in Section 3.1. With inviscid
TSP data, the initial downward trend has become consistent in slope with the measurements;
moreover, as with the strip-theory aerodynamics in Fig 11, the approximate allowance for
the effects of supercritical flow have resulted in the prediction of the steep increase
in Vf . But the lateral displacement of about F.02 in M between the inviscid TSP and

experimental curves shows that the calculated disappearance of flutter is premature. When
the TSP data incorporate the calculated boundary layers with Reynolds number 3.4 1 106
and transition to turbulence at 5% chord as in the wind-tunnel tests, the lateral dis-
placement is reduced to about 0.01 in M . Discrepancies are thus extremely small, and
it may be said that the viscous TSP aerolynamics achieve an excellent measure of agreement
with the experiment.
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One aspect of the flutter tests that has called for explanation is the large
increase in flutter frequency at M = 0.889 in Table 2. Fig 14 presents the informa-
tion on ff against M_ to correspond to Fig 13. The remarkable agreement between

linear theory and experiment in the range 0.84 < M < 0.88 is perhaps fortuitous.
Although the frequencies based on TSP calculations in this range of M are 10 to 15%
high, the discrepancy is reduced slightly when viscous effects are taken into account. It
is also reassuring that, in supercritical flow where Fig 13 shows the rapid increase in
Vf , Fig 14 shows the upward trend in ff towards the high measured value of 120 Hz,

whether or not the viscous effects are included in the TSP calculations. The matching
procedure in the calculations (Section 4.1) is such that ff is derived indirectly and
can be quite sensitive to changes in the solution.

Since the structural characferistics in the calculations are independent of stream
conditions, the disappearance ot flutter at the higher supercritical Mach numbers is
aerodynamic in origin. The Appendix describes how a simple explanation en.nrges from
Niblett's1 4 graphical representation of a binary approximation to the fl' cer equations.
It is first verified that the overtone bending modes 2, 3 and 5 in Table I can be elimin-
ated to leave binary flutter in modes 1 and 4 with similar characteristics, as shown in
Table 5. Typical aerodynamic force matrices for M = 0.88 after this simplification
are given in Table 3. It is in fact one of the smahler coefficikents Q4 4 (= -0.008 in

Table 3b) that plays the dominant role; this aerodynamic stiffness in the torsion mode is
strongly influenced by the rearward shift in aerodynamic centre x ac as M. increases

in Fig 8, and more especially by the corresponding behaviour in local aerodynamic centre
Eac over the outer part of the span in the upper diagram of Fig 12. The direct stiff-

ness and damping coefficients in the fundamental torsion mode, Q44 and Q44 , are

plotted against M. in Fig 15. While the variation in Q44 against M_ is no greater

with TSP theory than with linear theory, it is the fall in -Q 4  inherent in the tran-

sonic flow conditions that matters. Moreover, the delay of this fall by about 0.01 in M.
when viscous effects are included brings the improved prediction of flutter speed in
Fig 13.

To check the simple explanation in the Appendix, the flutter calculations for
M = 0.84 with inviscid TSP aerodynamics have been repeated with identical aerodynamic
data, except that the values of O 4 are replaced by those for M. = 0.88 . The calcula-

ted flutter speed Vf = 255 m/s then increases to a value in excess of 400 m/s, just

like the result for M = 0.88 with inviscid TSP aerodynamics. It is reasonable to
suppose that the same mechanism was at work in the experiments.

4.5 Effects of Reynolds Number and Incidence

Having calculated critical flutter speeds for the wind-tunnel test conditions as
far as available transonic theoretical techniques will permit, we now sample the effects
of Reynolds number and mean incidence not covered by the experiments. As a preliminary
we apply the arguments of the Appendix and consider what might be expected in the light
of the calculated aerodynamic centres. Fig 8 shows that a factor of 10 on Reynolds
number at M ' = 0.86 brings the value of xac roughly half-way towards the value for

inviscid flow; a similar effect is expected in the local aerodynamic centres in lower
diagram of Fig 12, where the bottom curve corresponds to the wind-tunnel conditions, and
a rearward shift of about 0.02 in Eac is envisaged. The effect of incidence in

inviscid flow over the outer part of the span is a somewhat larger rearward shift of
0.05 in & ac as a is increased from 0 to 20. Thus, for the particular model, an

increase in either Reynolds number or mean incidence should have a favourable influence
on flutter speed.

The Reynolds number R = 3.5 x 107 is chosen as typical of full scale, and
boundary-layer transition is retained at 5% chord. The results of the flutter calcula-
tion are included on the right-hand side of Fig 16. The factor of 10 on Reynolds number
at M = 0.86 raises flutter speed by only 1% and gives a marginal increase in flutter
frequency, as Table 4b shows..The collected information with Vf plotted against log1 0 R

in Fig 16 puts the various results for M = 0.86 and a0 = 0 into perspective and

shows that strip-theory analysis (Section 4.3) underestimates the measured flutter speed
where the use of Ref 7 leads to a much smaller over-estimate.

It would have been interesting to have calculated the effect of mean incidence in
viscous flow, but even at a = 1°  the state of the boundary layer on the upper surface
just aft of the shock wave is thought to be critically close to separation. Therefore
the calculations are restricted to inviscid flow. Mean incidence was varied from
a0 - 0 to 20 in steps of 0.50, and the curve of Vf against a0 on the left of Fig 16

is found to be roughly parabolic in shape. The increase in flutter speed is even larger
than might have been expected from Fig 12 in contrast to the small effect of Reynolds
number. The result emphasises the importance of the dependence of unsteady aerodynamic
data upon mean flow conditions at transonic Mach numbers. The equivalent flutter speed
has increased from 78 rn/s to about 475 m/s beyond the range of the experiments as a 0increases from 0 to 20, that is as the mean lift coefficient C L increases from
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0 to 0.29. Practical restrictions on CL  in wind-tunnel flutter testing are therefore
to be regretted.

5 CONCLUDING REMARKS

The flutter tests confirm both the usefulness and the shortcomings of completely
linearized aerodynamics. In subsonic flows, calculated wing forces are cften more
realistic when both thickness and viscosity are neglected than when only one of these
effects is taken into account. Indeed, the flutter calculations are reasonably success-
ful in giving flutter speed within ±8% for stream Mach numbers M from 0.75 to 0.88.
On the other hand, the predicted downward slope of equivalent flutter speed against M
around 0.8 is less than half the slope from experimental data. Moreover, this gentle
slope continues beyond M = 0.86 with no trace of the observed sharp rise in flutter
speed and the rapid disappearance of flutter.

The effect of supercritical flow on the flutter model at zero lift is unlikely to
be typical of lifting winga designed for this speed range. The investigation is viewed
as a demonstrator of the order of magnitude of transonic effects on flutter, and more
especially as an indirect test of aerodynamic calculations in the absence of pressure
measurements. It would be interesting to make a comparable study for a supercritical
wing at the design condition.

The simplest scheme of transonic calculation is to use the incremental spanwise
loading and distribution of aerodynamic centre from TSP theory in conjunction with strip
theory (Section 4.3) to modify the completely linearized aerodynamic force coefficients.
Although the calculated flutter speeds are less good quantitatively, it is significant
that the qualitative trend is now correct. This use of strip theory underestimates both
the flutter speed at subcritical M and the value of M associated with the sharp
rise in flutter speed, but this essential characteristic ;f the flutter tests is
modelled.

The aerodynamic calculations by means of Ref 7 utilize the complete pressure
distribution as distinct from the local lifts and moments from TSP theory. The allowance
for frequency is fully three-dimensional and compatible with lifting-surface' theory. When
the steady and quasi-steady data are taken from inviscid TSP theory, the measured flutter
speed is predicted within ±4% when M < 0.855 , and the downward slope of the curve is
also correct. Although the calculatea sharp rise is premature by about 0.02 in Mach
number, this discrepancy is roughly halved when viscous TSP theory is used instead with
Reynolds number and transition position corresponding to the wind-tunnel conditions.

The availability of a steady three-dimensional viscous TSP theory (Ref 10) in con-
junction with Ref 7 makes possible a flutter calculation for full-scale Reynolds number.
A factor of ten on Reynolds number gives a marginal increase in flutter speed at
M = 0.86 . By contrast, the effect of mean incidence in inviscid flow at this Mach
number is found to be large fur the particular wing.

The calculated 25% increase in equivalent air speed at flitter as mean incidence is
increased from 0 to 1.50 suggests that an extension of the experimental investigation to
non-zero mean lift is desirable. There are opposing factors however, first that viscous
TSP calculations at the higher incidence are likely to be unreliable at M = 0.86
because of shock-induced boundary-layer separation, and second that the stiffness of the
flutter model is insufficient to prevent considerable static deformation. The fact
remains that the lift dependence of transonic flutter characteristics needs attentive
study.

It has been possible to isolate the particular aerodynamic force coefficient that
has the greatest influence on flutter speed, and the quantity (Q 4 ) is akin to a direct

pitching moment. The gentle trend of decreasing flutter speed against M in the sub-
sonic and low supercritical ranges is associated with an increasing lift ;lope. But the
trend towards stability against flutter with increasing supercritical Mach number and
with increasing mean incidence is allied to a rearward movement in local aerodynamic
centre over the outer portion of the span.
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Appendix

THE REASON FOR THE LARGE INCREASE IN CRITICAL FLUTTER SPEED WITH MACH NUMBER

by
J. C. A. Baldock

The reason for the large increase in flutter speed has been investigated by using
Niblett's 14 'graphical representation' of binary flutter. This technique requires the
flutter problem to be in two degrees of freedom with matrix equation

A + akVBq + V2 Cq + Eq = 0, (A-i)

where V = U-/p7p0  is the equivalent air speed,

a = P./P0 is air density relative to standard air density at sea level,

q corresponds to a set of normal modes.

The representation shows variations with V as parameter and requires constant
matrices A, B, C and E and a constant value of a . Techniques1 5 are available for con-
densing a flutter condition from many degrees of freedom to a similar condition in two
derived degrees of freedom, but they have not been necessary with this example. As will
be seen, the two-degree-of-freedom system with the normal modes of fundamental bending
and fundamental torsion gives a variation in flutter speed with Mach number similar to
that with the basic five-degree-of-freedom system used in the main flutter calculations.

The form of Eq. (A-i) is different from the one in the main report in that Eq. (13)
represents the model conditions in the wind tunnel where U , M and stagnation tempera-
ture T0 are constant and equivalent air speed V is varied by changing the air density.
With Eq. (A-i) the effects of air density and equivalent air speed are separated. The
aerodynamic matrices B and C are regarded as constant although they are functions of
frequency parameter as well as M . For fixed M the aerodynamic matrices for
U = 0.428 nearest to the critical frequency parameter-have been used for all V . As a
further simplification an average value of a has been used throughout. Table 5 shows
that for inviscid flow the equivalent binary solutions give a similar variation of
critical equivalent air speed Vf with Mach number.

In the 'graphical representation' of binary flutter, the real and imaginary parts
of the characteristic equation at flutter are separated; with a suitable choice of
coordinates, it is shown that flutter is given at the intersection of a conic and a
straight line. Fig 13 shows a typical representation. Coordinate y is proportional to
V2 and coordinate w is proportional to the square of frequency. The conic labelled
"a = 0" is given by scaled coefficients of the matrices A, C add E , and the point
marked FC gives the conditions at 'frequency coalescence' flutter, ie with a = 0 in
Eq. (A-I). Flutter at finite a is given by the intersection of the other conic ard a
line, called the 'damping line' because it depends largely on the coefficients in the
aerodynamic damping matrix B . The flutter point moves along the damping line towards
the a = 0 conic as the relative density a is decreased. Properties of the conics can
be related to the scaled aerodynamic coefficients, and some of those relevant to the
present problem are shown on Fig 17; viz, the slopes of the a = 0 conic at y = 0 are
equal to the scaled direct aerodynamic stiffness coefficients c11  and c2 2 , and the

differences between the conics is proportional to ab , where b is the determinant of
the scaled matrix B

The graphical representations for M = 0.84, 0.86 and 0.88 are shown in Figs 18
to 20. The most obvious differences between the graphs lie in the finite a conics, and
especially in the upper slopes of the conics at y = 0 . As Mach number increases, there
is some increase in the upper angle between the "a = 0" and "finite a" conics, indica-
ting some increase in ab , but the largest differences are in the upper slopes of the
a = 0 conics, which equal c2 2  (Fig 17). The modes are numbered in increasing

frequency, so that mode I is the fundamental bending mode and mode 2 is the fundamental
torsion mode. Therefore c2 2 is the direct aerodynamic stiffness term for the torsion

mode. The enormous increase in the turning-point values of y with finite a , arising
from the increased upper slopes, is not entirely matched, however, by similar increases
in y for the flutter point; due to the low position of the damping line the inter-
sections take place in the lower parts of the conic. The net result is that, for this
particular application, the clue to variations in flutter speed lies in the inter-
sections of the damping line and the o = 0 conics.

The dependence on Mach number of the intersection with the o = 0 conics
resembles that for the turning value of y for the u = 0 conics (FC in Fig 17). There-
fore this turning value of y for 'frequency coalescence' relates closely to flutter

speed. The turning value is given by the comparatively simple expression from Ref 14:

(e22 - ell)

YFC (e [ 2 2  + 2 (A-2)
(e2 + el)(2 c22 + 2(- c 12 c21)122 )[c,, c22
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When the values of these scaled coefficients for increasing M are inserted, it becomes
clear that c2 2 is the most significant coefficient, variations in cll, c12 and c21

tending to have smaller effects. Therefore c22 has been found to have two effects

relating to the increased flutter speed through its influence on the turning value of y
for the o = 0 conics and on the upper slopes of these conics.

Coefficient c2 2 corresponds to the direct aerodynamic stiffness in the wing

torsion mode, ard its value obviously relates to the spanwise distributions of local lift
curve slope and local aerodynamic centre, especially over the outer part of the span.
Coefficient c12 , representing the force in the bending mode due to the torsional motion,

will depend mostly on the values of the local lift curve slope. As M increases from
0.84 to 0.88, c12 is increased by about 22%, but the value of c2 2 Ts reduced to 18%

of its value at M = 0.84 . This reduction is associated primarily with a rearward
shift of local aerodynamic centre which more than compensates for the effect of increased
lift curve slope. Coefficient c2 1 from the force in the torsion mode due to wing bend-

ing is reduced to 43% of its M = 0.84 value as M is increased to 0.88. A reduction
in this coefficient would also te expected from a rearward shift in local aerodynamic
centre. It is concluded that the rearward shift in E ac with increasing M_ in the

upper diagram of Fig 12 is playing a large part in the increasing flutter speeds in
Table 5.

The significance of the direct aerodynamic stiffness coefficient in the wing
torsion mode could no doubt have been found by an automatic process of repeated flutter
solutions with arbitrary variations in each of the aerodynamic damping and stiffness
coefficients in the original five-degree-of-freedom calculation. The advantage of the
graphical representation of Ref 14 is that the computation required is very much less.
Moreover, the bird's-eye view of the problem is valuable for its indication of the
flutter mechanism and for guidance on the effect of various coefficients in combination,
which would usually result from physical changes in the aerodynamics.
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Table 1

CALCULATED AND MEASURED MODES AND FREQUENCIES

ode MMode frequency (Hz)
number Mode description

Calculation .xperiment

1 Fundamental bending 37.3 36.8

2 First overtone bending 116.7 113.4

3 Second overtone bending 253.9 269.0

4 Fundamental torsion 323.6 326.5

5 Third overtone bending 446.9 406.5

Table 2

EXPERIMENTAL FLUTTER RESULTS

Root M Vf (m/s) f f f
condition E.A.S. (Hz) (derived)

Free 0.749 304 1.237 116 0.57

Free 0.803 278 1.064 100 0.46

Locked 0.803 278 1.064 100 0.46

Free 0.843 260 0.955 89 0.40

Locked 0.852 257 0.935 88 0.39

Locked 0.871 257 0.917 86 0.37

Free 0.874 260 0.925 85 0.37

Free 0.889 334 1.171 120 0.51

Free 0.900 >352 >1.219 -

Table 3

AERODYNAMIC FORCE MATRICES FOR MODES 1 AND 4

M = 0.88, V = 0.428

(a) Linear theory (Ref 3)

0.210 0.493) + iv/ -0.604 0.007)

-0.024 -0.034! \-0.010 0. 070/

(b) Ref 7 with inviscid TSP data

0.304 0.730) + iv( 0.955 0.130)

0.013 -0.008/ 0.019 0.063)

(c) Ref 7 with viscous TSP data

(0.236 0.553\ + iv 0.697 0.043)
-0.018 -0.021) k-0.002 0.054!
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Table 4

CALCULATED EQUIVALENT AIR SPEEDS AT FLUTTER

(a) Lifting-surface aerodynamics

Aerodynamics M a0 (deg) Vf (m/s) vf

Lifting-surface 0.75 Any 296 0.53

0.80 Any 282 0.46

0.86 Any 273 0.38

0.89 Any 268 0.37

(b) Aerodynamics by means of Ref 7

Aerodynamics M. a 0 (deg) Vf (m/s) vf

Inviscid TSP 0.80 0 272 0.47

0.84 0 255 0.45

0.86 0 278 0.46

0.86 0.5 283 0.46

0.86 1.0 308 0.46

0.86 1.5 350 0.48

0.86 2.0 (475) (0.51)

0.88 0 >400

TSP (R = 3.4 x 10 ) 0.86 0 261 0.43

0.88 0 326 0.45

0.885 0 >450 -

TSP (R = 3.5 x 10 ) 0.86 0 264 0.44

(c) Strip-theory aerodynamics

Aerodynamics M a0 (deg) Vf (m/s) f

Inviscid TSP 0.80 0 241 0.70

0.84 0 225 0.65

0.86 0 288 0.56

TSP (R = 3.4 x 106) 0.86 0 232 0.63

0.88 0 -

Table 5

COMPARICON OF FLUTTER SPEEDS FROM FULL SOLUTIONS AND EQUIVALENT BINARY SOLUTIONS

Values of V f (m/s)
Inviscid TSP

M. = 0.84 M. = 0.86 M. = 0.88

Full solution 255 278 >400

Binary solution 265 294 398
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SUMMARY

A compressible time-dependent Navier-Stokes calculation procedure which includes a transition turbulence
model is applied to the isolated airfoil problem. The procedure solves the Navier-Stokes equations by the
consistently split linearized block implicit method of Briley and McDonald in a body fitted coordinate system.
The procedure is described and results are presented for flow about an airfoil whose incidence changes from
6 degrees to 19 degrees at a Reynolds number of one million and Mach number of 0.2. In addition, the unsteady
flow about an airfoil held at a constant 19 degree incidence is examined and compared to data.

INTRODUCTION

The continued rapid development of computer hardware accompanied by rapid advances in numerical tech-
niques have led to a very significant broadening of the practical choices available for analyzing viscous
flow fields. Prior to recent computational advances predictive methods for viscous flow were confined
primarily to empirical correlations or integral boundary layer solutions; however, computational techniques
now allow routine solutions of the two-dimensional laminar and turbulent boundary layer equations. More
recently attention has focused upon complex viscous flow fields which are not suited to analysis by two-
dimensional boundary layer approaches and one important problem of this type is the general flow about a
two-dimensional isolated airfoil.

The isolated airfoil flow problem is a classical problem of practical importance which arises in a
variety of flow applications. Much of the initial impetus for predicting the isolated airfoil flow field
was generated by the need to determine the lift characteristics of various airfoil shapes as a function of
the incidence angle. Although initial studies focused upon the case of an airfoil at constant incidence,
later studies include airfoils with time varying motion, and more recent efforts have begun to consider the
aerodynamic flutter problem where aerodynamic and aeroelastic phenomena interact to determine the flow field
solution.

If the airfoil flow field Is well-behaved; i.e., if the boundary layer remains unseparated, then good
predictions of lift for airfoils in steady flow can be obtained from a purely inviscid analysis. Obviously,
an inviscid analysis does not contain a loss mechanism and if aerodynamic losses are required, they can be
obtained from an empirical correlation or from a boundary layer type analysis. The prediction of the airfoil
flow field at higher incidences where boundary layer separation occurs is more difficult.

When the viscous layer on the airfoil surface exhibits regions of significant separation, a purely in-
viscid analysis will not suffice even if only lift predictions are of interest. In the presence of signifi-
cant separation, the observed pressure distribution will differ considerably from that predicted from inviscid
flow considerations. The actual pressure distribution corresponds to that around a body equivalent in shape
to the airfoil plus a displacement correction (for viscous displacement effects), and in the presence of
large separated regions the displacement correction is not small. In such cases an analysis which is more
complete than a purely inviscid analysis is required. One possibility for solving the separated airfoil flow
field problem is the boundary layer strong interaction approach. lin this approach an inviscid analysis and
a boundary layer type analysis are solved so that the viscous displacement effects resulting from boundary
layer growth influence the inviscid pressure distribution. Although this approach can give good results for
some cases, it does have certain drawbacks. Usually, the approach requires an iteration between the two solu-
tions end in the case of subsonic flow the iteration is a global one; i.e., the Inviscid analysis is solved
for a given displacement surface. The inviscid pressure distribution is then imposed upon the boundary layer
equations and these equations are solved to predict the boundary layer development including a new dlsplae-
ment surface and the process is repeated. This iteration process may be difficult to converge under some
circumstances, for example when large regions of separation occur or when the flow is transonic. Furthermore,
assumptions may be required to treat the boundary layer equations in separated regions and normal pressure
gradients must be assumed negligible in the viscous flow region. The drawbacks associated with boundary
layer strong interaction techniquri have led some investigators to seek an alternate means of predicting air-
foil flow fields; one such alternate approach is a solution of the full Navier-Stokes equations.

One early application of the Navier-Stokes analysis to the isolated airfoil flow problem was performed
by Mehta and Lavan (Ref. I) who solved a stream function vorticity formulation of the laminar incompresslble'
Navier-Stokes equations to predict flow about an impulsively started airfoil. Although this method requirt-d
considerable computer run time, its excellent results convincingly demonstrated the practical benefits which
could be realized from Navier-Stokes solutions. In another early investigation Lugt and Haussling (Ref. .)
utilized an incompressible stream function-vorticity approach to investigate flow about an abruptly started
elliptical cylinder. More recent incompressible stream function-vorticity analyses have focused upon various
aspects of the airfoil flow field problem. For example, Mehta (Ref. 3) used a nmerical scheme considerablv
more efficient than that of Ref. I to solve incompressible laminar flow about an airfoil os,illating through
incidence regimes in which stall occurs. Wu and Sampath (Ref. 4) and Wu, Sampath and Sankar (Ref. ,) applied
the Wu-Thompson integro-differential formulation (Ref. 6) to both the impulsively started airfoil and th'
oscillating airfoil problem. In a similar vein Kinney and Cielak (Refs. 7 and 8) have investigated un~te.idv
airfoil flow fields and Lugt and Haussling (Ref. 9) have investigated the time scale required t,, istllih
the Joukowski condition in incompressible flow. Finally, Thompson and his coworkers (e.g. Rvf. 10) hav, al-
culated the flow about a variety of airfoil shapes and Hodge and Stone (Ref. 11) have Inwestigatf.d tallvd
airfoils using an incompressible primitive variable approach.
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Although arguments can be made in favor of one of these procedures versus the other, it is clear that
as a group these efforts have demonstrated that application of Navier-Stokes formulations to the airfoil
problems are both feasible and practical. However, these procedures all have been limited by assumptions
of (i) incompressibility and (ii) laminar flow. In regard to the first of these items, the preceding analyses
all are incompressible and none except possibly that of Hodge and Stone can be extended readily to the com-
pressible case. In regard to the second limitation, all these analyses assume the flow to be laminar,
although presumably this assumption can be relieved in a straightforward manner If simple eddy viscosity and
forced transition concepts are accepted.

The problem of eliminating the incompressible assumption from the full Navier-Stokes equations for air-
foil flow field calculations has been the sobje , of a number of investigations. Verhoff (Ref. 12) applied
MacCormack's fully explicit method (Ref. 13) to the airfoil problem; however, since the procedure is fully
explicit, a small time step is necessary to maintain numerical stability as a result of the locally refined
mesh in the boundary layer and long computer run times result. In this regard conditionally stable schemes
such as fully explicit schemes ire not an optimum choice when mesh refinement is required for boundary layer
definition; in these schemes the maximum allowable time step size is limited by the spatial step size leading
to large run times. The time-step limitation problem, which is severe even in laminar flows, -is magnified
considerably in turbulent flows where a much finer spatial resolution is required in the boundary layer. On
the other hand, unconditionally stable schemes (in a linear sense) such as some of the implicit schemes do
not uffer from this characteristic. Both Deiwert's (Ref. 14) and Levy's (Ref. 15) analyses are based upon
MacCormack's more recent hybrid implicit-explicit-characteristtcs scheme (Ref. 16). By virtue of an enlarged
stability bound this new procedure is more efficient than the original MacCormack procedure (Ref. 13) for
airfoil calculations; however, it does present formidable coding problems. Implicit schemes, although more
complicated to code than explicit schemes, do not present the formidable coding problems associated with the
hybrid scheme. An implicit solution of the full Navier-Stokes equations has been developed by Gibeling,
Shamroth and Eiseman (Ref. 17) who applied the Briley-McDonald (Ref. 18) numerical technique to the airfoil
flow field. A similar approach has since been used by San'-" and Tassa (Ref. 19) to study an oscillating
airfoil in a compressible low Reynolds number fluid. In another approach Steger (Ref. 20) used the thin
shear layer equations in conjunction with the coordinate generation procedure of Thompson, Thames and
Mastin (Ref. 21) to predict laminar flow about an airfoil. The equations solved in Ref. 20 are a reduced
set of equations which retain only the viscous stress terms important in thin shear layer flows.

Although these various approaches have focused upon the compressible problem, they have been confined to
laminar flow whereas most flow fields of practical interest are turbulent. In principle a laminar procedure
can be extended to turbulent flow in a straight forward manner if eddy viscosity and forced transition con-
cepts are accepted. However, in the general airfoil flow field the eddy viscosity assumption which relates
the eddy viscosity to the mean flow via an algebraic equation is expected to be inadequate. The eddy vis-
cosity assumption is particularly suspect in regions of strong pressure gradients and may be inappropriate
in regions of separated flow. In addition, an important component of the flow field development may be the
transition process since early transition may inhibit separation. In this regard a forced transition model,
where the transition location is uniquely related to some mean flow parameter such as a boundary layer in-
tegral thickness, may lead to serious errors in the predicted results. Thus, a more general turbulence
model is sought. Finally, the airfoil flow field contains regions of laminar, transitional and turbulent
flow and, therefore, any model used must be appropriate for all three flow regimes. Such a model has been
applied by Shamroth and Gibeling to the airfoil flow field problem (Ref. 22). The model used combines a
turbulence energy partial differential equation with an algebraic length scale equation, and in Ref. 22 tht
model was used to predict airfoil flow fields at both zero and six degrees incidence. Although the predicted
results at these incidence angles were encouraging, they did not address the problem of the stalled airfoil
in a high Reynolds number turbulent flow. The present paper focuses upon the airfoil at high incidence
angle as it considers flow about an airfoil in ramping motion as well as flow about an airfoil at high
Incidence.

ANALYSIS
The Coordinate System

The presence of bounding surfaces of a computational domain which do not fall upon coordinate lines pre-
sents significant difficulties for numerical techniques which solve the Navier-Stokes equations. If a bound-
ing surface (such as the airfoil surface) does not coincide with a coordinate line, serious numerical errors
may arise in the application of boundary conditions and considerable effort may be required to reduce these
errors to an acceptable level. Although this problem arises in both viscous and inviscid flows, it is more
severe in viscous flows where no-slip conditions on solid walls can combine with boundary condition trunca-
tion error to produce numerical solutions which are both qualitatively and quantitatively in error. Thus
coordinate systems are sought In which each no-slip surface of the specific problem falls on a coordinate
line. Such a system is termed a body-fitted coordinate system. Several approaches are available to form a
body-fitted coordinate system. Among the coordinate system candidates are conformal coordinate systems such
as that used by Mehta (Ref. 3), systems based upon solution of a Poisson equation such as those developed by
Thompson and his coworkers (e.g. Ref. 21) or Haussling (Ref. 23) and a constructive system.

The approach used in the present effort is a constructive approach in which the required airfoil is by
definition a coordinate line and in which grid point placement is specified by the user. The procedure was
developed originally for the isolated airfoil problem by (ibeling, Shamroth and Eiseman (Ref. 17) and ex-
tended to the cascade by Elseman (Ref. 24); the application of the procedure to the airfoil problem is
described in Ref. 25. The coordinate system generated by the constructive process has several advantages.
The system allows packing of grid points in regions where high grid resolution is required. In general, the
high resolution regions are required near the airfoil surface (where the boundary layer is found) and in the
vicinity if the airfoil leading edge where rapid streamwise changes are present. In addition, although the
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grid has a branch cut emanating from the airfoil trailing edge, metric data is continuous across the branch
cut. Furthermore, although the grid is nonorthogonal, the amount of nonorthogonality is not large. Finally,
as applied to the airfoil problem the metric data remains smooth from grid point to grid point. A sketch of
the coordinate system is shown in Fig. 1 and a fuller discussion is presented in Refs. 24 and 25.

Mean Flow Equations

A solution of the compressible, time-dependent Navier-Stokes equations in conjunction with a suitable
turbulence model would serve to predict the flow field for both laminar and turbulent flows. The form of the
equations expressed in the more common coordinate systems can be found in standard fluid dynamic texts and the
equations themselves have beca derived in general tensor form by McVitte (Ref. 26) for inviscid flow and by
Walkden (Ref. 27) for viscous flow.

One possible approach for solving the equations in general nonorthogonal form is the strong conservation
approach such as that used by Steger (Ref. 20) and Thomas and Lombard (Ref. 28). A second possible approach
solves a set of equations in which the metric coefficients do not appear within derivatives (quasilinear
form). In both cases the independent spatial variables are transformed from the Cartesian coordinates (xy)
to a new set of coordinates (&,n) where

C C(xyt)

7 i (x,y,t)

rs
(1)

The stong conservation form of the equations then becomes

aw/D I we1  N + 1 . --OT D*D D6-q D D 0

+±- 1L(4 + 6, L ) ( Szi1- + 61a
Ref C D 0 all D 0

(2)

where

D /'?y - C 1, 1

puv F p PPV F, o\ X

(3)

The quasilinear form of the equations is expressed as

w Ow 6F 6G Ow OF #G-V + ft -T +( 6T + C ,aT + '7,TI + 1 TI-T + 11, 7-
6F, + T' i + C G + IY6w I Cr, 6a, 01)

(4)

It should be noted that in both approaches the dependent variables are the density, p, and the Cartesian
velocity components.

The problem of proper equation form in non-Cartesian spatial variables has been discussed by several
investigators (e.g., Refs. 22 and 28). If the strong conservation form of the equations is to be used then
care must be taken to evaluate the metric data by a method which is consistent with a control volume approach
(Ref. 28). Usually this requires numerical evaluation of the metric data even if an analytic functional
relationship for the transformation is available. The analytic representation of the metric data. 'x, &y'
etc., when combined with the strong conservation form of the equations leads to significant error
for as straightforward a calculation as low Reynolds number flow about a circular cylinder (Ref. 22). In a
private communication (Ref. 29) Thompson has suggested that the discrepancy shown in Ref. 22 would he de-
creased or eliminated by use of numerically evaluated metrfc coefficients. Thus in the case of a time-
independent Jacobian, either approach can be expected to yield satisfactory results. The quasilinear form
was used in the present effort.

.. . .. .. ...i .w
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The Turbulence Model

Since the present effort addresses the problem of turbulent flow, it is necessary to specify a tur-
bulence model suitable for this problem. One complicating factor in hypothesizing and applying a turbulence
model for the isolated airfoil flow field is that the flow is not turbulent everywhere. Far from the air-
foil the flow is inviscid and irrotational. In addition, even near the airfoil surface the flow is laminar
in the vicinity of the airfoil leading edge. Thus any proposed model must be capable of dealing with
laminar, transitional and turbulent flow. Although a turbulent calculation could be obtained by assuming
an eddy viscosity model, eddy viscosity (or equilibrium mixing length) models are not appropriate for flows
containing large separated regions (e.g. Ref. 30). In addition, if an eddy viscosity model were to be used,
then the transition location must be specified and the various transition location correlations may not be
appropriate for the very strong pressure gradients found in flow about airfoils at incidence.

The approach taken in the present effort assumes an isotropic turbulent viscosity, P T' relating the
Reynolds stress tensor to mean flow gradients.

-pj'_ 2AT du 6-k

Jj x1  3 dxk
(5)

The turbulent viscosity is related to the turbulence energy, k, and the turbulence energy dissipation rate,
E, via the Prandtl-Kolmogorov constituti e equation

IT = pC k2/ E f(y/8).

(6)
where C is a turbulence structural coefficient and f(y/6) is a factor used to ensure small turbulent vis-P

cosities at locations far from the airfoil. The function f(y/6) is taken as

f(y/8) = I > y

(7)
where b is a constant. Tie present approach utilizes the turbulence energy equation, an algebraic length
scale equation and a functional form for C in which C is dependent upon turbulence Reynolds number. When

this model is used in conjunction with the mean flow equations, both the mean flow and turbulent viscosity
emerge from the solution.

The turbulence energy equation has been given by many investigators (e.g. Ref. 31) and can be written as

dpk 6puk + puk d r T\ ak-+ -+- IIkL -. +-I-I-
at ax y k Rx Y ork akJ

+ u'T( _ui + Uk )u PU -k 12 dk
dMI xk 6XI )axk ax 13

(8)

The turbulence energy dissipation rate c, is related to a length scale Z, the turbulence energy k, and tle
structural coefficient C via the equation

314 k 3/2
('C -

(9)

The length scale is taken as a minimum value of two lengths; a wall length and a wake lengti. hI'll
wall length is assumed to be given by a conventional wall damped Prandtl's mixing length, via

I -
" /

(10) !

with a maximum value of 0.09 6. In Eq. (10) K is the von Karman constant taken as 0.43, v is the dimension-
less distance from the airfoil surface and A is the boundary layer thickness. The wake length scale was taken
as Z-.056 where 6 is the wake thickness. In regions of separated flow the length scale is modified so that
lZ2min where

LMIN  = 0 h -
-y /  )

(11)t

where h is the local height 'f the s+eparated rtiln.
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Finally, the coefficient C is evaluated following the procedure of McDonald and his coworkers (Refs.

32-34) which has been very successful in predicting boundary layers in forward and reverse transition. This
approach relates C to a new coefficient a, where

a C 112/2

(12)

and a1 is taken as a function of a turbulence Reynolds number, R , of the form

I/ 1 J/ .0 + 6.66a 100 -I

(13)

where

0o - .0115

f(R, ) - 100. RrO
"

U FIT : I

f(R r ) - 68 I Rr + 614-3 R r >40

(14)

and a cubic curve is fit for values of R between I and 40.

It should be noted that with the current turbulence model the turbulence equations are solved in conjunc-
tion with the mean flow equations throughout the flow field. The analysis predicts some regions having a tur-
bulent viscosity much larger than the laminar viscosity (turbulent regions), other regions having a turbulent
viscosity on the order of the laminar viscosity (transitional regions), and finally, some regions having tur-
bulent viscosity less than the laminar viscosity (laminar regions). No transition location is input into the
analysis.

The Numerical Procedure

The numerical procedure used to solve the governing equations is a consistently split linearized block
implicit scheme originally developed by Briley and McDonald (Ref. 18) which is embodied in a computer code
termed MINT, an acronym for Multi-dimensional Implicit Nonlinear Time-dependent. The basic algorithm was
further developed and applied to both laminar and turbulent flows in a variety of studies (e.g. Refs. 22,
35, 36). A recent comprehensive description of the method is given by Briley and McDonald in Ref. 37.

The method can be outlined as follows: the governing equations are replaced by an implicit time dif-
ference approximation, optionally a backward difference or Crank-Nicolson scheme; the backward difference
approach was used in the present calculations. Terms involving nonlinearities at the implicit time level are
linearized by Taylor expansion about the solution at the known time level, and spatial difference approxima-
tions are introduced. The result is a system of multidimensional coupled (but linear) difference equations
for the dependent variables at the unknown or implicit time level. To solve these difference equations, the
Douglas-Gunn (Ref. 38) procedure for generating alternating-direction implicit (ADI) schemes as perturbations
of fundamental implicit difference schemes is introduced in its natural extension to systems of partial dif-
ferential equations. This technique leads to systems of coupled linear difference equations having narrow
block-banded matrix structures which can be solved efficiently by standard block-elimination methods. Details
of the procedure are given in Refs. 18, 22 and 37.

Boundary Conditions

An important component of the airfoil analysis concerns specification of boundary conditions. The
present analysis requires boundary conditions to be set along the lines (mIn' =Cmax' n=min and

-n max- With the coordinate system sketched in Fig. 1, = mIn (line Ell) and =
1
max (line DF) are downstream

boundaries. In the original formulation (Refs. 17 and 22) first derivatives of all quantities were set to
zero along these lines and function conditions for all variables were set on the outer boundary HJNKF. On
the airfoil surface no-slip conditions were used in conjunction with an inviscid momentum equation (which for

no motion reduced to zero pressure gradient) as boundary conditions and either the turbulence energy or its
derivative was specified at tne surface. The results presented in Refs. 17 and 22 were obtained with these
boundary conditions. More recently the boundary conditions were modified based upon a suggestion by Brilev
and McDonald (Ref. 36). Following this suggestion, static pressure is specified along with velocity deriva-
tives along the downstream boundaries (lines Eli and DF) and along the aft portion of the outer boundary
(line segments HJ and KF). Total pressure, angle of incidence and the density derivative are specified along

the outer boundary segment INK. This approach was used successfully by Shamroth, (ibeling and McDonald
(Ref. 39) in a Navier-Stokes solution to the cascade problem ani has since bee incorporated into the airfoil

A.



analysis. The ramp motion and nineteen degree incidence results presented here were obtained with this
latter set of boundary conditions.

e,, Grid Spacing and Artificial Viscosity

file solution of the Navier-Stokes equations
for an isolated airfoil at high Reynolds number
presents a formidable grid resolution problem.
If the regions having rapid changes in dependent

A variables are to be adequately resolved and if the
outer boundary is to be placed in a region only
modestly perturbed by the airfoil flow field,

f,N E then considerable grid stretching must be used.
p In the present calculations' the grid was very

highly resolved in the vicinity of the airfoil
where the first grid point was placed 0.00002

C chords from the airfoil surface. In contrast, the
grid spacing in the outer region of the flow was
of the order of 0.6 chords. Similarly grid points
were concentrated in the airfoil leading edge
region. Hence, high resolution was obtained in

1 F regions where the dependent variables changed
rapidly.

}i go. [. - 4k'~ ,, ,,.rd iriate system.
A second problem which arises in high Reynolds

number flow is the spurious oscillations associ-

ated with the so-called "cell Reynolds number
problem". In the present approach these oscilla-

tions wert, damped by idding a normal diffusion term to the equations in which the diffusive coefficient Wa
was set hv the criterion that til cell Reynolds number be less than or equal to 2. The cell Reynolds
number is defined is ,ui Axt I / where ui is the velocity component in the ith direction and Ax is the grid

th
spacing in the I direction. If tile cell Reynolds number at a given location is less than 2, no artificial
diffusion term Is added at that location. In the present calculations the cell Reynolds number in the
direction normal to the airfoil surface is less than two in the vicinity of the airfoil and, therefore, no
artificial diffusion term need be added to the momenta equations in this region, Therefore, the major
diffusion process in the calculation is not altered by this artificial damping term.

RESULTS

Low Incidence Cases

A preliminary assessment of the code was made by calculating flow about a NACA0012 airfoil at zero degrees
incidence. The Reynolds number for this case was 106 and the Mach number was 0.147. Two calculations were
made: the first calculation used a coordinate grid of 41x30 points to calculate flow about one-half the
symmetric airfoil flow field. The second calculation did not assume symmetry and utilized a grid which gives
better resolution in the vicinity of the airfoil. The grid in this case consisted of 81 pseudo-radial lines
and 39 pseudo-azimuthal lines with the first pseudo-radial grid point located 0.00002 chords from the airfoil
surface and the last pseudo-radial grid point (the outer boundary) located approximately four chords from the
airfoil surface. The low incidence calculations were initiated from an approximate inviscid solution with
,I sinple overwrite near the airfoil surface bringing the flow field to a no-slip condition. Convergence was
obtained in approximately 150 time steps.

The predicted pressure distribution for the full airfoil calculation along with the results of Mehta
(Ref. 3) and the data of Gregory and O'Reilly (Ref. 40) are shown in Fig. 2. As can be seen in Fig. 2, the
results of the present calculation are in good agreement with the data except in the aft region of tile air-
foil. In this region the difference between Mehta's results and the data may result from Mehta's analysis
(Ref. 3) being laminar and the data being taken in tile turbulent regime. A laminar boundary layer is more
susceptible to separation than a turbulent one and indeed, the prediction of Mehta does show separation up-
stream of the trailing edge whereas the data show the boundary layer to remain attached over the entire
suction surface. Therefore, the discrepancy between the data of Ref.40 and the analysis of Mehta con Id be
the result of the computed laminar boundary layer separating and modifying the trailing edge pressure dis-
tribution. Likewise, although the present prediction includes a turbulence model, tile grid resolution in
the vicinity of the airfoil surface still may not be sufficiently fine; consequently a discrepancy in the
predicted surface pressure distribution may result. This possibility is given weight in Ref. 22 where an
improvement in the aft region surface pressure distribution with Increased boundary laver resolution is
noted.

Following the zero incidence calculation attention was focused upon prediction of the airfoil flow
field at six degrees incidence. Once again the Reynolds number was 106 and the Mach number was 0.147. The
predicted pressure distribution is compared with the data of Gregory and O'Reilly (Ref. 40) taken for a
Reynolds number 2.8x106 in Fig. 3. As shown in Fig. 3 the major discrepancy between data and analytic
prediction occurs in the leading edge region where the analysis fails to predict the correct suction peak.
This discrepancy is at least partially a result of grid resolution. The strong favorable pressure gradient
region leading to the suction peak occurs in a very limited region of the flow field between osx/c:l).01.
This region extends over only one percent of tile airfoil chord and onlv one tenth of 'no percent ol tlie
cntire grid extent. In Interest of computer run t ime economy the grid was limited to R1x3O points (a total
if 2430 grid points) and even though points were packed Into the leading edge region, only four pscudo-
radial lines were placed within the favorable pressure grad!ent rigion. Thus even with a t it ali of 2410 grid



points and significant leading edge grid pack-
ing, resolution in this region was marginal. It

-I.0 is expected that increased resolution would result

-- Present results - Re = L0 in better agreement with the data.

-0.8- _ rMcrta - Re = 10,000 (theory) 6 In regard to other aspects of the flow field
Gregory & O'Reiilv- Re 2-9 2x10 the predicted suction surface trinsition location

-0. (occurs at x/c 0. U8. The dat, of Gregory and
O'Reilly gives transition at x/c -0.04 for aReynolds number of 2.8x,0

6 
and xc cOO0 for a

Reynolds number of 1.48x10
6
. Thu the predicted

-0.- transition location is in excellent agreement with

data. The transition location predicted on the
pressure surface is x/c - 0.30; thus the pressure

surface boundary layer remains laminar considerably
2\ longer than does the suction surface boundary

layer, as expected. In addition, as shown indet "t1

in Ref. 22, the analysis gives many of the experi-0.4
amentally observed flow phenomena including rapid

acceleration around the leading edge, different
0.6 development of pressure and suction surface boundary

lavers and different development of pressure and

0.8 suction surface turbulence energy fielas.

1.0 Airfoil in Ramp Motion
0 0.2 0.4 0.6 0.8 1.0

Streamwise distance, x/c The next case considered is the NACAOOi2

airfoil in ramp motion. In this case the
Figure 2. - Surface pressure distribution for Reynolds number was taken as 106 and the Mach

NACA 0012 airfoil at zero incidence number as 0.147. A solution was allowed to
(full airfoil calculation) develop for an airfoil at six degrees incidence

and when the flow approached steady state the

incidence was changed from 6 to 19 degrees via

the equation

Present results Re 
= 

106 6 = +(Aa) [l.0-cos Wit-to) t <t< (t 0 0+I

Gregory & O'Reilly Re = 2.8x10 
2

-3.0 where

Surface pressure distribution ao 60 , Aa=13
0
, w=5, to=l.20

For t>(to+H)/w, the incidence was held constant at

0.0 0~oA

The results of the calculation during the

-1.0 ramping period are presented in Figs. 4 and 5.
Figure 4 shows the pressure coefficient distri-
bution at various incidence angles. At six

degrees the pressure distribution is typical of
that found for a steady airfoil; the suction peak

M 0 .has been smeared and diminished due to insufficient
Wstreamwise resolution as discussed previously. As

a, the incidence changes from 6 to 9 degrees the

rapid motion, particularly in the trailing edge
I.1 ___ 1 A...... region, causes high pressure to appear on the

0.2 0.4 0.6 0.8 1.0 lower side of the airfoil and low pressures to
4._0 appear on the upper side. It should be noted that

the velocity of the airfoil trailing edge relative

lift distribution to the inertial frame reaches a maximum value of

0.4 U and, therefore, large deviations from the

steady solution are to be expected. The situation
3.0 becomes more pronounced at 12.5 degrees; however,

by 14 degrees a tendency to return to the usual

a static airfoil pressure distribution appears.

Finally, at the last incidence angle, 19 degrees,
2.0 (t=1.93), the basic pressure distribution is ap-

proaching the type expected for a steady airfoil

with no evidence of stall. The location of the
separation points is presented in Fig. 5. At the

1.11 initiation of the ramp motion no separated flow
awas present; however, separation appeared soon

after the ramp motion began and the trailing edge

separation point moves continuously upstream as

- i -_ I .jshown in the figure. During this process the

0.. 0.6 1.8 1.0 separated region remains very thin and has only a
minimum viscous displacement effect upon the

Streamwise dltane, x/c outer nominally inviscid flow.

Figure I. - Surface pressure diStrihution for

NACA 0H)12 ;irfill at h
°

incidence.
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After cessation of the motion the flow con-
tinues to develop and the pressure distribution

-8.0T = 1.93 undergoes radical changes as shown in Figs. 6 and

7. The major changes occur in the airfoil leading

6' edge region where the suction peak appearing on
the airfoil upper surface continues to drop inI 90

-b.0 - 12.50 magnitude from a value of approximately 6.8 at
t-1.83 (just after the cessation of airfoil motion)

-0 14o to a value of approximately 1.2 at t-5.38. A unit

l9* increment in t represents the time required for a

-particle moving at free stream velocity to tra-=-4.0
verse a distance of one chord. The drop in the

suction peak and the accompanying decrease in

airfoil lift exhibited in Figs. 4, 6 and 7 are

consistent with the development of airfoil stall.
-2.0 .... Z The calculation also predicts a minor movement of

I the airfoil front stagnation point towards the
:geometric leading edge. In addition to the loss

N of lift, the analysis predicts a pressure pertur-

0 _ _ bation to initiate at t 3.7 (see Fig. 6) and

then move downstream at a speed of approximately
- </ /36% free stream velocity. Although quantitative

-____, / jcomparisons between this prediction and data are

2.0 I -- ... - not available, the predicted flow seems physically

0 0.2 0.4 0.6 0.8 1.0 realistic.

Streamwise location, x/c

Figure 4. - Pressure coefficient for

airfoil in ramp motion. The Stalled Airfoil -

19 Degrees Incidence

Upon reaching 19 degrees, the motion ceased

and as discussed in the previous section the air-
foil flow field was allowed to develop at 190.

A comparison of the calculated results and the

19 L o measured deta of Young, Meyers and Hoad (Ref. 41)
9Location of for an airfoil at 19.40 incidence is presented in

140 separation Fig. 8. Figure 8 compares the predicted and
/ point measured values of the zero velocity line. Below

12.5' this line the flow is directed toward the leading
90 edge and above this line the flow is directed

/ toward the trailing edge. The predicted values

are shown as a function of time. During the

ramping process the separated region present was
too thin to be shown on the scale of Fig. 8 and

the results shown are at times well past the ces-
sation of the ramping motion which ceases at

\-Leading edge separation bubble t 1.9. The results presented in Fig. 8 show

appears between 12.5' and 140 the growth of the backflow velocity zone with time,

and at the latter times shown the backflow zone

Figure 5. - Location of separation points position has converged over most of the airfoil
for airfoil in ramp motion. as continued growth is confined to regions in the

vicinity of the airfoil trailing edge. As can be

seen the comparison between predicted zone location

and that measured by Young, Meyers and Hoad

(Ref. 41) is .ery encouraging.

___T=3.08

A vector plot of the velocity field as
T=3.78 measured by Young, Meyers and Hoad is shown in

T=4.43 Fig. 9. These results show a large separated

region to be present over the airfoil upper sur-
-8. face with separation initiating in the immediate

vicinity of the airfoil leading edge. A vortex
L appears to be centered at roughly the eighty per-

cent chord location. The data (not shown on this

a figure) indicated that the wake closure point was

located well downstream of the airfoil trailing
S4.

edge and above the airfoil suction surface.

Another feature is the appearance of a very

-2. strong shear layer in the airfoil trailing edge

-7 vicinity where the suction surface and pressure
0 _ . surface flow fields meet. Finally, the calculated
0. results indicate that flow is entrained into the

recirculation region from two sources. One source
2.uLL 9 __ L L) J is the flow region above the recirculation zone.

0 0.1 0.2 0.3 0.4 .5 0.6 0.7 0.8 0.9 1.0 The second source is the flow which originates on

the airfoil pressure surface, then passes into
Streamwise location. X/c the mixing layer which forms at the airfoil trail-

Figure 6. - Pressure distribution for 190 airfoil ing edge and finally is entrained into the re-

after cessation of airfoil motion circulation region from below.

(airfoil motion ceases at T-1.83).
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Predicted veloLitv vector fieids irv shown in Figs. 10 and 11. These figures represent the flow field

at times tI and tljAt where At is the time required for a free stream particle to move a distance of one

chord length. As can be seen in the figures, the analysis predicts the formation of a large separation
region which initiates very near the airfoil leading edge; this is in agreement with the data shown in Fig. 8.

Other similarities between data and analytic prediction can be found in the vortex formation and in the strong

shear layer which appears at the airfoil trailing edge. In addition, the calculated flow field was charac-

terized by significant flow unsteadiness in the leading edge region which limited the permissible maximum

time step. This characteristic of unsteady leading edge flow also appeared in the experimental study.

In regard to other features the analysis showed the vortex to be moving downstream at a velocity of ap-

proximately 0.2 U.; however, no regular shedding pattern was observed in the experiment. Some comments on

this are in order. First of all the calculation has not yet been run long enough to determine if a regular

shedding will result although the first vortex being formed definitely appears to be in the process of shed-

ding. Secondly, although the experiment did not detect any regular shedding pattern, it is possible that an

irregular shedding did occur. Finally, the turbulence model used may cause a spurious prediction of shedding.

_ T"=4-43 A second feature to be considered is the
backflow velocity. The maximum reversed flow
velocity measured in the experiment was of the

-- T=5.38 order 0.25 U . The maximum backflow values

shown in Fig. 10 are approximately 0.50 U_.

-8.0 Although this value is high, modifications

C. in the choice of the separated zone turbulence
-6.0 F length scale could decrease this quantity. In

calculations performed during this study modi-
- fying this length scale significantly changed
-4.0 the backflow velocity without significantly

changing other flow features. Finally, it should

a -2.0[- be noted that the length of the separated zone

------ _ is still increasing as the wake reattachment

point is continuing to move downstream (see
0Fig. 8). As the separated zone becomes longer,

it is possible that the predicted backflow
2velocity will decrease.2.I{ ve Iwill

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Calculated ii contours at the two

Streamwise location, x/c times are shown in Figs. 12 and 13. The vor-
ticity contours presented correspond to normal-

Figure 7. - Pressure distribution for 19' airfoil ized values of -100, -25, -10, -5, 0, 5, 10,

after cessation of airfoil motion 25, 100. In both figures the vorticity on the

(airfoil motion ceases at T=1.83). airfoil pressure surface is confined to the

boundary layer whereas that on the suction sur-

faces occurs in two locations. One region of

Data of Young, Meyers and Hoad vorticity is located in the wall layer close to
(NASA Technical Paper 1266 the airfoil surface; the second region is a

AVRADCOM Technical Report 78-50) 'tongue-like' region extending from the vicinity
T=4.0 of the airfoil leading edge into the 'free
T=4.5 stream'. This contour line represented by the

T=5.4 value 5 is a region of a local maximum vorticity.

T=5.6 As can be seen by comparing Figs. 12 and 13, the

T=5.7 tongue-like region of vorticity appears to break
T=5.9 off and be convected downstream as a local con-

centrated region (See Fig. 13). This may be in-

terpreted as the initiation of a shed vortex.
A third area of high vorticity concentration

occurs at the airfoil trailing edge where the

sharp mixing layer is present. The two contour
lines in each figure which are upstream of the
airfoil are the locus of zero vorticity and

......- '.. these lines separate regions of very low posi-
N /tive and very low negative vorticity present in

the calculation.

A closer examination of the predicted flow

Figure 8. - Development of backflow velocity field shows the emergence of an inner counter-

zone for airfoil at 19*
.  

clockwise rotating separation zone which occurs

under the main suction surface separation zone.
As can be seen in Figs. 9-11, the major separated

region is a large region of clockwise rotation. However, a detailed vector plot of the mid-chord portion of

the suction surface presented in Fig. 14 shows a secondary separation region of counter-clockwise rotation

developing very close to the surface. This region is characterized by having flow in the immediate vicinity

of the airfoil surface directed in the downstream direction and the region is completely embedded within the

primary separation zone. A final velocity vector plot is shown In Fig. 15 which details the leading edge
region. The stagnation point location, the flow separation at the stagnation point, the acceleration about

the leading edge and the initiation of flow separation are all shown clearly.

Plots of static pressure contours are presented in Figs. 16 and 17. The results correspond to physical

times t, and t1+At where AtI is the time required for a free stream particle to travel one chord in distance;

these Items are identical to those used for the velocity vector plots, Figs. 10 and ii, and the vorticity

contour plots, Figs. 12 and 13. The contours plotted represent values of (p-p )/(p
0
-p ) where p is the

local static pressure, p_ is the undisturbed free stream static pressure and po is the undisturbed free stream
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44

Figure 9. -Experimentally measured velocity Figure 12. - Vorticity contours,

field, a- 19.4*. (Data of Young, a j90 , t = *

Meyers and Road)

~~0.0

t t1 + At, At =1.0.

Figure 10. Computed velocity vector field,

a 190, t t-

X/- .08/

X/

Approximate region of secondary vortex

Figure 11. Computed velocity vector field, Figure 14. -Velocity vector plot, detail of

a -19*, t- t I + At, At - 1.0. suction surface, a = 19*.
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stagnation pressure. The two pressure contours
are remarkably alike with the major difference
being a convection of the pressure field in the
downstream direction. The convection velocity is
approximately 0.25 U.. Contour lines of (p-p.)/

(p -p) are plotted for values 1.0, .8, .5, .3,

0, -.3, -.5, -.8, -1.0. The increase in static

pressure as the flow approaches the front stag-
nation point is clearly shown in both figures. In
addition no sharp suction peak occurs on the air-
foil upper surface. Rather a gradual pressure
drop occurs over the front portion of the suction
surface and this is followed y a pressure rise.
The pressure field is consistent with a stalled
airfoil.

Measurements of the resultant standard devia-
. .- J - tion of velocity as given by Young, Meyers and

7</"?.. Road (Ref. 41) are presented in Fig. 18. The
,2 2 2

results represent lines of constant (u' /U +v'2/

U 
2
) 1

2 
and include all non-steady contributions;

i.e., contributions due to large scale unsteadi-
ness as well as turbulence. Furthermore, only
the contributions of two fluctuating velocity
components were measured. Finally, the free
stream value of the resultant standard deviation

measured in the tunnel is approximately 0.04.

If it is assumed w'=u'-"v' then the maximum value
,2 ,2 ,2 2

of kf(u' +v' +w' )/2U. is approximately equal to

- - 0.09. As shown in Fig. 18 measured regions of
high resultant standard deviation occur in the
vicinity of the free mixing region; a second
region of high resultant standard deviation values
occurs at the airfoil trailing edge. Predicted
values of k are shown in the contour plot of

/Fig. 19. The contour line values plotted are
0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06.
The locus of the line having the maximum turbulence
energy at each streamwise station is also shown
in Fig. 19. It should be noted that this line has
the same general shape as that experimentally
measured; it is nearly parallel to the free stream
over most of the airfoil and then turns downward

Figure 15. - Velocity vector plot, detail of at a streamwise location in the vicinity of the
leading edge region, a = 19' trailing edge. The magnitude of k on this line

varies between 0.02 and 0.03; however, the measured
velocity resultant standard deviation includes all
unsteadiness and the calculation includes only

that unsteadiness associated with turbulence.
Furthermore, the measured free stream redultant

standard deviation was 0.04 and the free stream
turbulence level used in the calculation was
0.001. Therefore, the measured data and pre-
dicted values are consistent and even appear to be

.800 in reasonable agreement.

CONCLUSION

The present paper describes the application of
a time-dependent, compressible Navier-Stokes cal-
culation procedure to the isolated airfoil problem.
The analysis solves the full Navier-Stokes equa-
tions in conjunction with a turbulence energy
model to predict the flow field development.
When applied to airfoils at relatively low inci-

dence, solutions obtained within 150 time steps
showed good general agreement with data and exhi-

"300 bited many of the experimentally observed flow
phenomena. Discrepancies between the calculated
results and data appear due primarily to grid
resolution and turbulence modeling effects. The

Figure 16. - Static pressure contours, analysis also was applied to ramp motion between
- 19%. t - t1.  6 and 19 degrees and to an airfoil held at 19

degrees incidence. Although no comparisons were
made with data for the ramp motion case, the com-
puted flow field appears to be physically realis-
tic. The 19 degree case was compared with experi-
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mental data and the results were very en-
couraging as the calculated flaw field was in
good qualitative agreement with the measure-

ments. In particular, both the calculation
and data showed the appearance of a large
separated region initiating in the immediate
vicinity of the airfoil leading edge, leading
edge unsteadiness, a strong shear region at
the airfoil trailing edge and the same general
level and location of the maximum turbulence
energy region. In addition, it should be

noted that the calculated wake closure point
was still moving downstream and further develop-
ment of the calculation may lead to improved
agreement.
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LXPERIMENTAL STUDIES OF SCALE EFFECTS ON
OSCILLATING AIRFOILS AT TRANSONIC SPEEDS

Sanford S. Davis
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Aerodynamics Division
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Moffett Field, California 94035, U.S.A.

SUM4ARY

Experimental data are presented on the effect of Reynolds number on unsteady pressures induced by the
pitching motion of an oscillating airfoil. Scale effects are discussed with reference to a conventional
airfoil (NACA 64A010) and a supercritical airfoil (NLR 7301) at mean-flow conditions that support both weak
and strong shock waves. During the experiment the Reynolds number was varied from 3 x 106 to 12 x 106 at
a Mach number and incidence necessary to induce the required flow. Both fundamental frequency and complete
time history data are presented over the range of reduced frequencies that is important in aeroelastic
applications. The experimental data show that viscous effects are important in the case of the supercrit-
ical airfoil at all flow conditions and in the case of the conventional airfoil under strong shock-wave
conditions. Some frequency-dependent viscous effects were also observed.

LIST OF SYMBOLS

C static pressure coefficient, Re chord Reynolds number
(P - PINF)/QINF

T period of the motion, sec

C (x,t) instantaneous pressure coefficient

p t time, sec
C p,(x) first harmonic complex amplitude of

the unsteady pressure, per radian U free-stream velocity, m/sec

c chord of wing, 0.5 m x distance along airfoil, m

exp(-iwt) cos wt - i sin wt 1 complex amplitude of the unsteady angle
of attack

f frequency, Hz, fT 1 1
am  mean angle of attack

q(t) qth moment of the instantaneous 
m

pressure coefficient u(t) instantaneous angle of attack

10, first harmonic complex amplitude of W radian frequency, 1/sec
the upper surface loading, per radian

Complex notations:
k reduced frequency, wc/2U

Im[ ] imaginary part of [ I
M free-stream Mach number

P(x,t) instantaneous pressure, N/m
2  Mag[ magnitude of

Ph[ I phase of [ I, deg
PINF free-stream static pressure, N/m

2

Re[l real part of[
QINF free-stream dynamic pressure, N/m2

1. INTRODUCTION

Scale effects have been considered an important element in aerodynamics research for many years. In
early experimental studies of steady transonic flows in the 1940s, the Reynolds number, as it affected the
state of the boundary layer approaching a shock wave, was recognized as a critical parameter (Ref. 1). In
the 1950s the boundary-layer-trip technique was developed to simulate high Reynolds number flows in the
wind tunnel (Ref. 2). With the development of thicker and more highly loaded airfoil sections in the 1960s,
more complicated scale effects due to local flow separations were discovered (Ref. 3), and extensive experi-
mental programs were developed to quantify these viscous interactions (Refs. 4, 5). Even today, a con-
certed effort is under way to understand the effect of Reynolds number on modern supercritical airfoil
sections (see Gessow's introductory remarks to a recent NASA conference, Ref. 6).

In the field of unsteady transonic aerodynamics, the scale effect has hardly been seriously considered,
either experimentally or analytically. In the original chapter on boundary-layer effects in the AGARD
Manual on Aeroelasticity (Ref. 7), the authors of that work found no studies that considered the coupling
of a boundary layer to the unsteady-pressure field. In Jones' review of unsteady aerodynamics in 1963
(Ref. 8), the need for such research was reiterated; current review articles continue to cite the need for
such research (Refs. 9, 10).

Recently, numerical solutions to the Navier-Stokes equations were applied to unsteady transonic flow
problems (Refs. 11-13). They were used to model passively excited oscillations where good qualitative
agreement with experiment was demonstrated. Computations for a forced oscillation problem, including
viscous effects, were reported in Ref. 14. All these codes, mostly concerned with mild transonic inter-
actions where simple turbulence models suffice, are limited by long executing times, even on powerful com-
puters. Future applications of the numerical method, guided by experimental data, better turbulence models,
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and the availability of faster computers will certainly contribute to our understandin.l of scale effects on
unsteady aerodynamic response.

Experimentally, Tijdeman (Ref. 15) analyzed some of the NLR oscillatory data for scale effect. Heaccounted for the boundary layer by including the displacement effect in the calculated pressure distri-
butions. For subsonic flows, his results show that thickness and boundary-layer effects tend to counteract
one another in the sense that measured unsteady-pressure distributions tend to follow classical flat-plate
theory. For transonic flows, his analysis showed that the boundary layer had a profound effect on both
the mean shock-wave location and the characteristic unsteady-pressure peak at the mean shock locations.Tijdeman showed that inviscid theories are inadequate for predicting unsteady transonic flows, but his
data, measured in an atmospheric wind tunnel, did not address the effect of Reynolds number directly.Similar comparisons and conclusions were reported by Grenon et al. (Ref. 16) in their oscillating flap
studies.

In this paper experimental data from tests in the 11- by 11-Foot Transonic Wind Tunnel at AmesResearch Center are used to illustrate the importance of scale effects on the unsteady aerodynamics of
both conventional and supercritical airfoils. First, the integrated upper-surface unsteady-pressure dis-tributions are used to assess global variations (Sec. 3.1). More detailed information is presented with
the aid of the fundamental frequency pressure data (Sec. 3.2), and ultimately with the instantaneous time
histories (Sec. 3.3). Many of the effects involve complex unsteady viscous interactions that are not yet
completely understood nor easily modeled; as a result, theoretical comparisons will be restricted to
linearized, inviscid, unsteady aerodynamic theory.

2. EXPERIMENTAL APPARATUS AND TEST CONDITIONS

The experiment was conducted during the early part of 1978. The 11- by 11-Foot Transonic Wind Tunnel
is a continuous flow facility that can be pressurized between 50 and 200 kPa for independent control of Machand Reynolds number. The test wings - an NACA 64AOIO converional airfoil section and an NLR 7301 super-
critical airfoil section -were mounted between two floor-to-ceiling splitter plates installed in the3.35- by 3.35-m slotted test section. The 0.5-m-chord by 1.35-m-span wings were fabricated from d light-
weight graphite-epoxy composite material. A sketch of the Lest apparatus is shown in Fig. 1. and a completedescription of the test hardware, motion generators, and models is given in Ref. 17. Tne chord Reynolds
number range was approximately 3 . 10' to 12 1 10

t . 
No boundary-layer trips were used in this test.

The data reported in this paper form a small portion of the extensive data base that was Uolvitedduring the test. Some of the data were previously reported in Refs I8 and 19, and a d isusslo'r i, the
method used to acquire and validate the unsteady data is presented i, Ref '0 The data subset relatinr to
scale effects is presented in Table 1. Two broad categories are represented 'inditionis to i
attached flows and conditions 4 and 5 are examples of separated flows As wi' tie svIow, retl,, i,
classes of flows can exhibit scale effects, with the separated flow Jata ndl at I r!' iIUre e rrf dV I

3. PRESENTATION OF DATA AND DISCUSSION

3.1 Variation of the Global Parai eter ., W r rIt , , e', ,

A convenient measure of the li)ad on the ppe, ) jrti 1. ,- , 1 ,r. ' i '., ,'
pressure distribution. As iritrodued itn Re' , th ;rh r',' I "

where q a iieaure it tnr , ji'r : . i ' t'i , . ,,'i , " . .. ,, •
dec-ompoi ti1on 1) t , le''. # hr Itb J!., 1,0

ions ider inq i rs. ithe it ta. ne~i ow, 0. .tn'I i1' * .t .
with frequen, y iz shownii r 'a(1 o. i I r , evri, 1 . ,,rt~o f t i meiter , a ,A I - W It
unsteady ierodynain t iur, Ne k-c i* i, ihOwl, f0j i.,npar ) If r, lri.,ii- , i i'
attached transori, fl,,w,, jc rea.r'r, iiniln t i ith lhr r ri f requen . ir , , i
bers The data a I , ,how de( rea, In-4 imp " Ite' , with iri reasinj Reynolds u tner, it i ' ' ,,
the subsorll: flow M ) i), 'he ,ari 'i i ire

, 
ar mirima) at i an probahly h i o f,, , -

sion of the bo iundiry utear i I )Ila, el rh t, franso ni, flows. teinq sens it i ve t hi) -wd , ),,,,],, ,
intera(t ins , .how , jhtl, ortp e r - Ie r , , ffe' is

A p j ,hi .lrullnr, t ne a ,' , t f)r ondiltioni 1-3 is shown in Fiq. .? whir( !he 4a, iil
comple, ampl tulp with keynul-)I iollibPr 5s presented at a reduced frequency k - U.5. A,, i_1pe, t .. ,
subsonif flow ()rnlir ! , leat affe ted by Reynolds number. The trend for both the convent riii ii,i
sjperriti al lata at tranlini Ma h nimters is toward decreasing in-phase and out-of-phase 'Re ia '- Iomponents with Reynolds ),jmtier it ,, noteworthy that, for each flow condition, the phase does ,' tri', i,
by more than 4' iver the Reynold, number range considered.

In fRels , i d '* wa ,nown that the aerodynamic transfer funcrt n (variation of load witi 0.
juen(y, was nr even Ival tat ip ie onsistent with linear theory wh, ck wave was strorj Pn(iuiv
separate the iiijnrIirt layer The separated boundary layer had a ma, . on the loads, arid i i
e~pe(ted that sal. etfe, t. woul alsoi tie very important. Table 3 shu-, the magnitude of the iompie,
amplitudes for )nditi-,r where ,tr,)n,4 ,nsteady shock-wave/boundary-layer interactions are encount'ret1
No disernible irenijs are vilJPni from these data. In fact, the magnitudes undergo alarming varlatl, ,
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with Reynolds number when compared with the attached-flow data. Due to this complex behavior, further
information must be gleaned from the unsteady-pressure data itself.

3.2 Unsteady-Pressure Distributions

The first harmonic complex unsteady pressure is defined by the following expression:

ciC~,Cx =1rTaC P,C x) = T jT C p X,t)exp(-iwt)dt

0

An analysis of the in-phase and out-of-phase (Re and Im) component of Cp . will show that the distribu-
tions for attached-flow conditions are qualitatively consistent with the simplest theoretical models that
include viscous effects by consideration of the boundary-layer displacement. The separated flow, however,
shows important unsteady effects that are attributed to both the steady-flow scale effect and the unsteady
viscous response of the boundary layer.

The data for attached-flow conditions 1-3 are shown in Figs. 3-5, respectively. For each frequency,
the mean, in-phase, and out-of-phase components of the unsteady-pressure distribution are presented.
Figure 3 shows that the subsonic flow (c = 0, M = 0.5) has minimal scale effect. The only difference
between Reynolds numbers is the slight dip in the in-phase component at wing station x/c = 0.5. Subli-
mation photographs showed that transition occurred at this location at Re = 2.5 x 106; at Re = 10 x 106,
transition was very close to the leading edge. In any event, the state of the boundary layer has no effect
on the unsteady-pressure distribution, which assumes the classical shape that was predicted many years ago
from linearized subsonic theory. The same airfoil at transonic speeds in Fig. 4 (a = 0, M = 0.8) shows
that scale effect is also quite minimal. Aside from a slight upwind movement of the mean shock position
that affects the chordwise location of the unsteady-pressure peak, the effect is minor. Sublimation photo-
graphs at this condition showed that transition occurs at the shock wave at Re = 3.3 x 106; while leading-
edge transition was observed at Re = 12.6 x 106. The last attached flow condition, shown in Fig. 5 for
the NLR 7301 supercritical airfoil, exhibits more severe scale effects. Although the region of rapid com-
pression (probably not a shock wave at this supercritical design condition) moves only slightly, the
unsteady pressure is quite different at the three Reynolds numbers indicated. These differences are prob-
ably due to the large extent of supercritical flow on the upper surface that is affected by the change in
effective airfoil shape due to the unsteady boundary-layer growth. The difficulty in distinguishing dif-
ferences by examining the integrated values shown previously is obvious because of the varying contribution
to the loads from positive and negative lobes of the unsteady pressures.

The data for shock-induced separation are more difficult to analyze. These data are shown in Figs. 6
and 7. Figure 6 shows the large effect of Reynolds number for the NACA 64A010 at a = 4°

, M = C.8 (condi-
tion 4 in Table 1). The mean flow differs not so much in the shock position as in the extent of separated
flow downstream of the shock. This separated flow has a marked effect on the in-phase unsteady pressure at
the shock wave and beyond. The out-of-phase pressures are not very much different at the two Reynolds num-
bers shown. The mechanisms whereby the in-phase pressures are more sensitive than the out-of-phase pres-
sures have yet to be explained. Figure 7 shows similar data for the supercritical airfoil at a Mach number
beyond its design point (condition 5 in Table 1). The mean flow differs from the previous case in the
absence of any discernible training-edge pressure recovery downstream of the shock wave. This indicates

more severe flow separation. The data for the unsteady components of the pressure distribution also show
a significant sensitivity to Reynolds number. For the in-phase component, especially, variations in the
negative contribution to the load change rapidly with Reynolds number. This large variation gives rise to
the confusing trends in the unsteady loads shown in Table 3. Again, it should be noted that the in-phase
urponents appear, to be more sensitive to Reynolds number than the out-of-phase components.

It is clear from the preceding discussion that a more fundamental data set needs to be examined to
}arife the underlying physical mechanisms behind the scale effect. The final sequence of data will srcy

,,ow tip Reynolds number effects the instantaneous unsteady-pressure time histories.

I Instantaneous Pressure Data

The measured unsteady-pressure coefficients C (xt) are presented in Figs. 8 to 12 for the five flow
indiitins listed in Table 1. At each chordwise stgtion (identified by a numerical key), data, are shown at

two Reyiolds numbers. The mean portion of the instantaneous pressure coefficient was suppressed for clarity.
Irhe reference line for each trace is the corresponding tic mark or the airfoil contour. As explained in

Ref I, the dynami, data have been processed to eliminate all asynchronous signals. Thus, all of the dips
ind bulges shown in the data are truly periodic. Whether they can be traced to a particular fluid-
,w,hani(.al event at that instant is argumentative, but they are included here for completeness. The input
,iotion is the same for both Reynolds numbers and can be used as the phase reference (.t 

= 
0 when , ,max

)

F r the most part, data are shown at the low, reduced frequency k z 0.05.

-he subsoni( flow (condition 1) is presented in Fig. 8, and, as expected, scale effect is minimal.

'he ,sjal trend of decreasing amplitude with increasing chordwise location is obvious. The distorted sig-

ij jt Re - 2 .- 10' in traces 9 and 10 is apparently caused by the transitional boundary layer. The

',O,' ori traes 15 and 16 at low Reynolds number has no discernible fluid-mechanical origin.

'he effet of Increasing the Mach number to 0.80 is shown in Fig. 9. The presence of the shock wave

,(,i4rpnt tny its distortion of the pressure signal of both Reynolds numbers, causing a severe local scale

,e, i Hofwever, both upstream and downstream of the shock wave, the Reynolds number does not have a sig-
, nt effect The qlobal ramifications of these local effects were tabulated in Table 2.

ili frorm the swperritical airfoil at Its shock-free desiqn condition are shown in Fiqs. 10a and lob.
At4 j.. irpspnfed at two frequencies to show the complicated cross-coupling between frequency and scale

,. ' thi ma,, not ;rpsent in the previous cases. In Fig. lOa data at the low reduced frequency of
',h(,w iferv si lnifi-ant salp effects in the supercritical flow region. At Re 1 12.6 - 10' there

• i
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is a higher amplitude, more distortion, and significant phase shifting. Whether these effects can be
explained by simple boundary-layer displacement corrections remains to be answered. In Fig. 10b there is
a surprising trend toward reduced harmonic distortions at higher Reynolds numbers (traces 5-9), although
there are still significant phase shifts attributable to scale effect. At the "shock wave" (which appears
during the cycle), the effect of Reynolds number is apparent. Consistent with the previous attached flow
data, there is minimal response near the trailing edge at both frequencies.

Data pertaining to the second flow regime (e.g., shock-induced separation), are presented in Figs. 11
and 12. In Fig. 11 the scale effect is most prominent at the shock-wave location (traces 8 and 9). The
fundamental frequency data shown in Fig. 6 indicate that the in-phase component is most severely affected
by the Reynolds number. The large change in the unsteady pressure is apparent. Upstream, there is a sig-
nificant increased phase lag with increasing Reynolds number. This phase lag persists into the separated-
flow region aft of the shock. Unfortunately, no data are available at k = 0.05.

In Fig. 12 the well-separated flow over the supercritical airfoil does not induce large unsteady dis-
turbances downstream of the shock. This seems to ameliorate the scale effect in the leading-edge region,
but not at the shock itself. Data at k = 0,05 show similar trends.

This cursory examination of the unsteady-pressure traces indicates the sensitivity of the flow patterns
to geometry, frequency, mean-flow conditions, and Reynolds number. It is clear that predic~ive schemes must
include, as a minimum, physical models of all of these parameters.

4. CONCLUDING REMARKS

Examination of some of the data from a series of tests on oscillating airfoils in the Ames 11- by 11-
Foot Transonic Wind Tunnel showed that scale effects could be a very important factor in the unsteady aero-
dynamic behavior of the airfoils. Configurations with mean flows that support fully attached boundary
layers and weak shock waves have unsteady response characteristics that are mild functions of Reynolds
number. These configurations can probably be modeled with currently available computational tools. An
exception, perhaps, is airfoils that possess mean flows with extensive regions of supercritical flow. The
detailed pressure distributions contain substantial scale effects, but the overall loads may not be so
severely affected.

Configurations with mean flows having detached boundary layers are enigmatic. As reported in Refs. 18
and 19, the contribution to the unsteady load may be caused by a delicate balancing of positive and nega-
tive lobes in the unsteady pressures (see Fig. 7). For these conditions, shape changes caused by scale
effects may have severe ramifications. The erratic behavior of the unsteady loads shown in Table 3 is
illustrative of this effect. The major technological application of unsteady aerodynamics is to aeroelastic
analysis and design. The sensitivity of flutter boundaries and stability margins to scale effects must be
considered in those situations.

In the mathematical modeling of unsteady transonic aerodynamics, it is clear that the Reynolds number
needs to be included as a primary parameter. Progress in computational research during the past decade was
characterized by the inclusion of nonlinear thickness effects, and it is hoped that this and other experi-
mental data, along with new computational efforts, will advance our knowledge well beyond the inviscid
approximation.
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TABLE I.- RANGE OF FLOW CONDITIONS CONSIDERED

Flow condition Airfoil M Cm Motion

1 NACA 64A010 0.500 0 Pitching ±1
° 
at 0.25 c

2 NACA 64A010 0.796 0 Pitching ±1 at 0.25 c

3 NLR 7301 0.752 0.37 Pitching ±0.5
° 

at 0.40 c

4 NACA 64A010 0.789 4.0 Pitching _1
° 
at 0.25 c

b NLR 7301 0.807 0.38 Pitching ±0.5
° 

at 0.40 c

TABLE 2.- MAGNITUDE OF UNSTEADY LOADING ATTRIBUTED TO UPPER SURFACE - ATTACHED FLOW

Mag I o, ,

Re x 10
-6

k = 0 k 0.025 k = 0.05 k = 0.10 k = 0.15 k = 0.20 k = 0.25 k = 0.30

Flow condition 1 (M = 0.500)

2.5 3.7 3.67 3.59 3.27 2.97 2.83 -

5 3.8 - - - - 2.45 -

10 - - 3.43 3.19 2.91 2.74 2.58 -

Inviscid theory 3.64 3.42 3.22 2.91 2.69 2.52 2.44 2.38

Flow condition 2 (M = 0.796)

3.3 5.5 - 4.87 - 3.19 2.84 2.24 -

6.7 5.7 - - - - 2.67 - -

12.6 - 4.62 4.41 3.80 2.90 2.68 2.16 2.16

Inviscid theory 5.25 4.61 4.12 3.46 3.07 2.84 2.71 2.63

Flow condition 3 (M = 0.752)

3.3 - - 6.46 - - 2.98 - -

6.2 - 6.56 6.19 4.80 - 3.67 2.01

11.5 - 6.05 5.62 4.63 3.65 3.12 - 1.94

Inviscid theory 4.76 4.2S 3.88 3.22 2.97 2.75 2.62 2.54

TABLE 3.- MAGNITUDE OF UNSTEADY LOADING ATTRIBUTED TO UPPER SURFACE SEPARATEB FLOW

Mag I,,

Re - 10
- 6

k = 0.05 k = 0.20

Flow condition 4 (M = 0.789)

6.2 - 4.48
11.9 1.67 5.57

Inviscid theory 4.12 2.84

Flow condition 5 (M = 0.807)

3.3 2.39 1.53
6.3 0.44 0.69
11.7 1.08 0.88
Inviscid theory 4.13 2.82
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Fig. 1. Oscillating airfoil test apparatus installed

in the 11- by 11-Foot (3.4 by 3.4 m) Transonic

Wind Tunnel at Ames Research Center.
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Fig. 2. Variation of the unsteady loading attributed

to tie upper surface with Reynold, numbor;
low-frcpquency data, k - 0.05.
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Fig. 3. Unsteady-pressure distribution on oscillating NACA 64A010 airfoil; mean and first 
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component, M 0.500, am = 00, pitching ±1= at 0.25 c.
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Fig. 4. Unsteady-pressure distribution on oscillating NACA 64A010 airfoil; mean and first harmonic
component, M = 0.796, am = 0*, pitching ±1* at 0.25 c.
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Fig. 5. Unsteady-pressure distribution on oscillating NLR 7301 airfoil; mean and first 
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component, M = 0.752, am = 037*' pitching 0.5* at 0.40 c.
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Fig. 6. Unsteady-pressure distribution on oscillat- Fig. 7. Unsteady-pressure distribution on oscillat-
ing NACA 64A010 airfoil; mean and first ing NLR 7301 airfoil; mean and first
harmonic component, M = 0.789, am =40, harmonic component, M 0.807, am = 0.38'.
pitching ±1' at 0.25 c. pitching ±0.50 at 0.40 c.
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Fig. 9. Complete time histories of unsteady-pressure data; M =0.796,

Um=0*, pitching ±1* at 0.25 c, k =0.05.
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Fig. .1. Complete time histories of unsteady-pressure data; M =0.789,
aLm V.4 pitching ±1, at 0.25 c. k = 0.20.
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SOME REMIARKS ON THE UNSTEADY AIRLOADS ON OSCILLATIN(;
CONTROL SURFACES IN SUBSONIC FLOW

by

H. Forsching
DFVLR - AVA Gdttingen

Institut ftr Aeroelostik
Bunsenstr. 10, 3400 Gtsttingen, Germany

Summar

Parameters which are neglected within the framework of linearized potential flow theory, but which are highly influential in
the development of unsteady airloads on oscillating control surfaces in subsonic flow are discussed. Based on theoretical and
experimental results the effects of gap width and slot geometry, finite thickness, flow viscosity, and incidence of both wirg
and control surface are explained. Some topics for further research work with regard to active control applicdtions are in-
dicated.

Nomenclature

x, y, z Cartesian coordinates

L Lift per unit span

Ma Mach number

M Wing moment per unit span

M B Control moment per unit span, about hinge axis

V Flow velocity

b Wing semi-span

c Wing half-chord

c Chord of control surface

c Unsteady pressure coefficient = (p - p ) /q
h Amplitude of bending deflection

P OD Static pressure of undisturbed flow

q Dynamic pressure = 1/2 p V2

A c Pressure difference between upper and lower surfacep
f Frequency of oscillation

k Reduced frequency = w c / V

kaI kb Unsteady aerodynamic lift coefficients due to L and M

mb Unsteady aerodynamic moment coefficients due to L and M
a a

nc Unsteady aerodynamic moment coefficient due to M 6

t Time

a Amplitude of pitch oscillation

a Steady mean incidence of winga

13 Amplitude of control surface rotation

B Steady mean incidence of control surface0

4EGap parameter (gap width / wing chord)

p Air density

T Control surface chord parameter = 2 c / c

S Circular frequency = 2wf

1. Introduction

The knowledge of the unsteady aerodynamic loading on oscillating wings with control surfaces is of special concern in aero-
elastic investigations and ;ndetermining power requirements in active control systems for load alleviation and flutter suppres-
sion. In view of the long-recognized inadequacy of linearized methods for the prediction of unsteady airloads on oscillating
t,*nq-edge control surfaces, questions can be raised about the possibilities of further theoretical improvements. One ten-
tative response would point to the attendent possibility of introducing into the theory such effects as boundary layer, tran-
sonic shocks near the wing surface, or local variations of flow properties due to thickness and slot geometry. Indeed, from
experimental studies it is known that these effects, which are neglected within the framework of linearized potential theory,
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are highly influential in the development of unsteady airloods on oscillating controls.

This paper elucidates the situation of our present knowledge of the unsteady airloads on oscillating controls, and indicates
some topics for further research work, particularly with regard to active control application, and to investigation of the
flutter stability of high-performance aircraft during operation at large angles of attack. Based on theoretical and experi-
mental results it is indicated how profile thickness, gap width and slot geometry, incidence of both wing and control and,
finally, flow viscosity affect the unsteady airloads on oscillating wing-control systems.

2. Parameters influencing the development of unsteady airloads on oscillating control surfaces

2.1 General remarks

If an aerodynamically unbalanced control is deflected so as to produce a discontinuity in mean surface slope along its lead-
ing and side edges, linearized lifting surface potential theory shows that the lifting pressure difference is logarithmically
singular along any subsonic leading edge, and that the spanwise lift distribution has a logarithmically infinite derivative at
the sides. In analytical predictions based on linearized lifting surface theory, this peculiar behavior of pressure distribution
around oscillating controls is taken into account by choosing corresponding pressure functions in applying kernel function
collocation methods, and by providing an accumulation of panels around the leading and side edges when panel procedures
are applied. As long as the wing is at zero angle of attack and the control surface oscillates around this steady position, an
when the gap between the wing and control is closed, experiments have shown that the measured unsteady airloads are in
reasonable agreement with theoretical results. But we also know from experiments that the type of pressure distribution in
the vicinity of the leading edge of an oscillating control, and thus the related overall unsteady aerodynamic hinge moment
coefficients, are extremely sensitive to even small changes in geometric shape. Whereas satisfactory correlation has gener-
ally been found between linearized "flat plate" theory and experiment for the unsteady two-dimensional aerodynamic coef-
ficients of oscillating wings (at zero incidence) in subsonic flow, this is not the case for the relating coefficients of oscillat-
ing control surfaces, as shown in Fig. 1 . It is seen that there is a discrepancy between linearized "flat plate" theory and
experiment by roughly 100% , and that the theoretical values are too large.

For this unsatisfactory situation several parameters are known to be of primary influence. As previously mentioned, the geo-
metry of the slot between the main surface and the control, and with it the definition of the effective location of the hinge
axis in context with an aerodynamically unbalanced control surface, is of considerable importance. Other important geo-
metric effects may be seen in the gap width, in the finite thickness, and in the static incidence of both the main surface and
the control itself. Furthermore, the influence of flow viscosity expressed in boundary layer effects or Reynolds number ef-
fects, etc., may be of importance. Although our knowledge about these effects upon the development of unsteady airloads
on oscillating wing-flap systems is stil! rather poor, some general statements can be made from what we have learned so far
mainly from wind tunnel measurements.

2.2 Effects of gap width and slot geometry

Concerning the effects of the slot geometry between wing and flap, the leading edge radius, the eccentricity and chordwise
location of the hinge, the slot extension and the gap width are of decisive importance. In practical calculations, as shown
in Fig. 2 , the question whether the translatory part of the control surface motion should be treated as a closed or open slot
poses considerable difficulties. Whereas in the real part an open slot yields no pressure singularity at all, a closed slot in-
duces a pressure singularity of the order ]/(x - xhinge) . It can be seen that the character of both pressure distributions is
completely different.

A strong p essure sensitivity can also be observed in connection with the gap width between the main surface and the control.
This was shown for steady flow by M.Landahl 111 many years ago, and is illustrated in Fig.3 . Starting with a logarithmic
singularity at the hinge line, the pressure very quickly changes there to a zero pressure difference at the trailing edge of the
fixed wing and a square root singularity at the flap leading edge. It is seen from Fig.3 that this change of pressure singu-
larity appears even for gap parameters ( which are only 0.1 to 1 Evidently this is also the case for an oscillating flap
with an open gap, as can clearly be seen in Fig.4 . The typical change of the pressure singuiirity and the increase of pres-
sure on the flap indicated in Fig.3 is also shown in Fig.4 , yielding a corresponding increase of the unsteady hinge mo-
ment. This has in fact been observed in wind tunnel measurements, when the gap width has been systematically increased,
see Ref. 131

Therefore it becomes obvious that, in treating the unsteady aerodynamic problem of the oscillating wing with control, we
have to deal basically with an aerodynamic interference problem of two lifting systems when the gap is unsealed, as is the
case with real aircraft wings. The same condition of course holds true also for a wing with a leading edge flap.

On the other hand, in wind tunnel model measurements, the slot geometry between wing and control surface is usually made
up of two concentric circles, i.e. there is no eccentricity and practically no aerodynamic balance. Thus, the gap parameter

is usually smaller than 0.34 . In reality aircraft wings with control surfaces exhibit rather asymmetric slot geometries
which may considerably affect both the steady and unsteady airloads on the lifting system. In parlicular this is the case when
the wing and/or the control surface have a steady mean incidence, as will be shown later.

There is a need for more detailed theoretical and experimental investigations of these effects of slot geometry and gap width.
With the possibilities given by the application of panel procedures it may be expected that at least potential-type theoretical
solutions of the two-dimensional problem will be elaborated in the near future, as already pointed out by Dr. Geissler in his
paper.

2.3 Effects of finite thickness and steady incidence

If the control surface is not coplanar with the fixed wing but is rather oscillating about a steady mean incidence, drastic ef-
fects on the development of the unsteady pressure distributions have also been observed. Apart from an increase in the load
distribution with increasing mean flap incidence Bo, the type of pressure singularity is also changing. In particular, the
imaginary part of the pressure distribution, which is non-singular if the wing and the flap are coplanar, has been found to
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of the order of only a small percentage.

It is not adequately known to what extent finite thickness affects the development or nsteoad airlord, .r isc'llo'ng cci, rr
surfaces, and hence the related two-dimensional unsteady aerodynarnc coefficients widely sed :ri strip onalyses The sG,,
holds true for the influence of the steady angle of attack which is also neglected in the process of linear;zoto>r. of the puter-
tial equation within the framework of small-perturbation theory In fact, inviscid linearized %noll-petturt~otrir !;ftir sur-
face theory has served the aeroelasticion well in a majority of the aircraft design applications, and it has teen carried ,now
to a high level of mathematical and numerical development. For oscillating wings without controls in subsonic flow the ef-
fects of thickness and steady angle of attack on the unsteady airloads seem to be of only minor irportance However, there
is evidence that the effect of these parameters is indeed important, in conjunction with the slot geometry arvi the open gap
on the unsteady airloods of oscillating control surfaces. This conclusion has been dr'vn from wind tunnel measurements on
an oscillating wing-flap system in two-dimensional incompressible flow, which have been performed recently at DFVLR in
Gottingen (41, some results of which are shown in the following figures.

F illustrates the profile geometry of the investigated airfoil with flap. The airfoil has a NACA 00
12-profile, the flap

has a chord ratio of 301 , and the control hinge is at 75f of the wing chord. The slot geometry is asymmetric and hence
typical For a slot usually found in real aircraft. Fig.6 also siows a comparison between the calculated and measured chord-
wise unsteady pressure distribution for the case that the airfoil with flap is at zero incidence ( to  0 and Go - 0 ), the
wing is at rest and the flap is undergoing harmonic oscillations about its hinge axis, and the gap is -losed. As can be seen,
there is a reasonably good correlation between linearized 'flat plate" theory and experiment, although a small slot effect
becomes obvious even when the gap is closed.

However, when the flap oscillates about steady mean incidences 60 4 0 and the gap is not closed, drastic changes in the
unsteady pressure distributions occur, as illustrated in Fig.7 . The same condition has been observed when the angle of at-
tack ar * 0 , as illustrated in Fig.8 . Finally, Fig.9 shows the effects of steady mean incidence of both the wing i o)
and the flap ( 60) upon the unsteady aerodynamic pressure distribution, together with the effect of the open and closed gap. V
It is clear that the closed gap yields a completely different pressure distribution and even a flow separation at the trailing
edge of the flap. There is practically no agreement with linearized "flat plate" predictions here, particularly on the fixed
wing and surprisingly even when the gap is closed.

A striking feature of all these pressure distributions near the flap leading edge is that two rather pronounced pressure peaks
always appear when the gap is open, thus indicating that the aerodynamic wing-flap problem in this case is in fact an aero-
dynamic interference problem.

Perhaps the most important practical consequences of these incidence and slot geometry effects with regard to active control
applications are manifested in the related control hinge moments, as illustrated in Fig. 10 . It can be seen that the unsteady
hinge moment coefficients nc are changing completely when the gap is closed. Linearized "flat plate" theory yields rather
unrealistic results and the relatively good agreement in the imaginary part at small roduced frequencies must be considered a
mere coincidence.

2.4 Effect of flow viscosity

It is often argued that thickness effects are roughly compensated for by boundary layer effects, explaining the good agreement
frequently found when comparing experimental aerodynamic results with the theoretical ones which neglect wing thickness
and fluid viscosity. To what extent this argument is really true is not definitely clear, and as long as no results are available
from systematic wind tunnel measurements in a wide range of Reynolds numbers, this reasoning should be applied with care.
In fact, there is some evidence that the boundary layer or the Reynolds number effect is of minor importance in treating un-
steady aerodynamic problems of oscillating wings without controls at least in subsonic flow at small incidences. Application
of transition strips is a common practice to simulate a turbulent boundary layer and a transcritical Reynolds number in wind
tunnel model tests. However, from the very few test results available for oscillating control surfaces at various Reynolds num-
bers, we know (see Ref. 151 ) that hinge moments of oscillating flaps are decisively dependent upon the Reynolds number.
Test results at moderate Mach numbers show deviations from potential theory calculations up to 100 , even in the case of
zero mean angle of attack (see also Fig. I ) . It is difficult to say to what extent these discrepancies may be attributed to
flow viscosity effects. For oscillating control surfaces, we must keep in mind that effects of gap geometry and incidence are
at least of the same order of magnitude, as shown in the previous discussion. On the other hand, it must be assumed that on
interaction takes place between the boundary layer and the very complicated flow processes at the flap leading edge for
those (open) gap geometries as they indeed exist on slotted aircraft wings, in particular when the wing-flop lifting system is
opernting at non-zero incidences. All these effects are widely unknown and there is an urgent need for detailed theoretical
experimental investigations.

As Dr. Geissler has mentioned in his paper, there is work underway at DFVLR to gain more insight into these rather compli-
cated aerodynamic problems. By applying a potential velocity panel procedure, an elaboration of theoretical results for the
unsteady airloads on oscillating control surfaces is attempted, taking into account the effects of finite thickness, gap geom-
etry and incidence. On the other hand, systematic wind tunnel measurements of two-dimensional unsteady aerodynamic
hinge derivatives in the Reynolds number range 105 to 107 are in preparation in a new type of compressed-air wind tunnel
It is hoped that these investigations will provide a better understanding of the unsteady airloads on oscillating controls in
context with real aircraft wing-control geometries and Reynolds numbers.



3. Conclusion

From the discussions it became apparent that those parameters neglected within the framework of linearized potential flow
theory may be highly influential in the development of unsteady oirloods on oscillating .ontrol surfaces in subsonic flow. In
particular, the effects of slot geometry and gap width, finite thickness, steady mean incidence of both wing and flap, and
flow viscosity have been shown to be of decisive importance. Since most of what we know today about these effects has been
learned from wind tunnel studies, efforts should be made to elaborate at least potential-type theoretical solutions. Applica-
tion of panel procedures may serve in this intention well.

Almost nothing is known about the influence of flow viscosity, and there is an urgent need for systematic wind tunnel investi-
gations on this subject with a wide range of Reynolds numbers. Since the development of unsteady airloads on oscillating
control surfaces in all its detail is still not thoroughly understood, much research work on this practical important topic of
unsteady aerodynamics is necessary in the future, especially with regard to active control applications.
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Figure 1: Comparison of theoretically predicted and measured unsteady aerodynamic hinge moment coefficients of an
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OSCILLATORY FLOWS FROM SHOCK-INDUCED SEPARATIONS ON BICONVEX AEROFOILS

OF VARYING THICKNESS IN VENTILATED WIND TUNNELS

D. G. Mabey

Structures Department, Royal Aircraft Establishment, Bedford, UK

SUMMARY

Previous tests of biconvex aerofoils at zero incidence at transonic speeds have
sometimes shown a narrow Mach number range within which the flow is periodic. Within t)2E
range large surface pressure fluctuations are developed at a discrete frequency, ciU
of order 1, which would strongly influence the buffeting of any aerodynamic component
with this section. Similar instabilities at transonic speeds have also been observed on
other aerofoils for thickness/chord ratios greater than about 10.

Recently the flow instability boundaries on a series of biconvex aerofoils with
thickness/chord ratios varying from 10 to 20%, set at zero incidence, were measured in a
small transonic tunnel. The region of flow instability with laminar boundary layer/shcck
wave interactions was a little wider than the corresponding region with turbulent
boundary layer/shock wave interactions. A criterion for the occurrence of the instability
was developed from the measurements.

Some interesting examples of dynamic wall-interference effects were observed in the
slotted working sections with hard slats, which were greatly reduced in the alternative
slotted working sections with slats made from sound-absorbing laminate. Interesting
examples of dynamic interference were also observed in special comparative tests in closed
working sections formed by hard or laminate walls.

LIST OF SYMBOLS

A empirical expression for wk/U

CL lift coefficient

c aerofoil chord

CA' CH aerodynamic and elastic hinge stiffnesses (eqn 4)

d total plenum chamber depth/tunnel height

f frequency of instability (Hz)

H tunnel height

I flap inertia

K transonic similarity parameter (eqn 1)

K equivalent transonic similarity parametere
9distance from terminal shock wave to trailing edge

M free stream Mach number

Mcrit critical Mach number

M equivalent Mach number associated with Ke e
M Mach number just upstream of terminal shock
p rms pressure fluctuation

q free stream kinetic pressure

R Reynolds number based on c

t aerofoil thickness

T time

U free stream velocity

x, y coordinates (Fig 2)

angle of incidence (degrees)

ratio of specific heats

circular frequency, 27f (radians/second)

1 INTRODUCTION

Recently there has been renewed interest in the use of thick wing sections (with
thickness/chord ratios, t/c , greater than say 10%) for civil aircraft operating at high
subsonic speeds (say from M = 0.75 to 0.85). Thus a wing section 15.]% thick will be
used at the root of the A310B aircraft. These thick sections allow reduced wing struc-

tural weight or increased aspect ratio, and may also be conveniently combined with

advanced sections which incorporate some degree of supercritical flow.
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One possible difficulty with such thick sections at transonic speeds and low angles
of incidence is the occurrence of periodic pressure fluctuations at frequency parameters,
We/U , of order 1. Some time ago Lambourne collected limited evidence for such rela-
tively low excitation frequencies at transonic speeds on a number L c conventional aerofoil
sections with thickness/chord ratios higher than 10%. Recently Roos and Riddle 2 found a
low level of discrete excitation at a frequency parameter of about 0.4 on a supercritical
wing of thickness/chord ratio 11%. At the design lift coefficient (of about CL = 0.5) the
discrete excitation persisted over the wide Mach number range from M = 0.60 to M = 0.87
(see Ref 2, Fig 22).

Thick biconvex aerofoils set at zero incidence are interesting because these produce
discrete excitation over a narrow range of Mach numbers at transonic speeds. Thus McDevitt
et aZ 3 found a narrow region of oscillatory flow in an 18% thick biconvex aerofoil (see
Fig I), which persisted over a wide range of Reynolds number. The region of oscillatory
flow was wider when the Mach number was decreased (dM/dT < 0) because of flow hysteresis.
This oscillatory flow is generated by the upstream and downstream movement of the terminal
shock and oscillatory vortex shedding in the wake. The phenomenon has subsequently been
predicted 4 , 5 , from a numerical solution of the full Navier-Stokes equations with an appro-
priate turbulence model. However no simple prediction method or adequate physical explan-
ation for the self-excited shock wave oscillation is yet available.

The present note provides the measured instability boundaries for biconvex aerofoils
with thickness/chord ratios varying from 10 to 20%. Analysis of the measurements suggests
features of the pressure fields which might produce flow instability on conventional aero-
foil sections. The measurements may also stimulate further theoretical studies.

2 EXPERIMENTAL DETAILS

The slotted transonic working section of the RAE 4 in x 4 in tunnel (H = 101 mm)
was used for these tests (Fig 2). Tests were made with both hard and laminate (sound-
absorbing) liners ,7 . Most of the tests were made with a total dimensionless plenum
chamber depth, d = 0.67, as illustrated in Fig 2, but a few comparative tests were made
with a total plenum chamber depth of d = 4.0. A few special tests were made with hard
and laminate closed working sections.

The biconvex aerofoils were made of wood and spanned the tunnel centrally. For the
aerofoils with thickness/chord ratios of 10, 12, 14, 16 and 18% the chords selected were
= 32 mm and 50 mm. For the aerofoils with thickness/chord ratio 20% the chords were

reduced to 25 mm and 41 mm to reduce the blockage. For brevity this reduction in chord is
ignored in figures where measurements for thickness/chord ratios of 20% are included.

For simplicity no pressure transducers were generally installed in a model. Instead,
six pressure transducers used in previous tests 6 ,7 were mounted on one sidewall close to
the model and ahead of it (Fig 2). Five transducers distant 0.5H upstream of the model
were used to check the wave form of the tunnel resonance excited by the unstable flow on
the model. Note that one transducer was in the top plenum chamber. A single transducer
adjacent to the model centre line, but displaced 0.25H below it, was used initially to
detect the onset of flow instability. Later this transducer was supplemented by another
closer to the model (y/H = - 0.05), and by another actually flush mounted on the 18% thick
aerofoil with c = 50 mm at 78% chord (y/H = 0).

The tunnel total pressure and total temperature cannot be independently controlled.
The tunnel total pressure is always a little lower than ambient static pressure and the
tunnel total temperature lies in the range from 10C to 150 C. For the small aerofoils used
in the present tests (c = 32 mm and 50 mm) this only gives Reynolds numbers of about
0.4 x 106 and 0.6 x 106 respectively. These low Reync;lds numbers ensured that laminar
boundary layer/shock wave interactions were achieved on the smaller aerofoils. Turbulent
boundary layer/shock wave interactions were ensured by fixing transition 2.5 mm downstream
of the leading edge with a narrow band of ballotini (small glass spheres) of dia. 0.25 mm.

3 RESULTS

3.1 Determination o. w instability boundaries and resonances

Fig 3 shows some initial test results with free transition and a laminar boundary
layer/shock wave interaction for the 18% thick aerofoil with a chord of 32 mm. Fig 3a
shows that the Mach number ranae for flow instability is easily measured on the sidewall
below the model (at y/H = - 0.25), although the pressure transducer is located a signific-
ant distance (0.78c) below the aerofoil. The lower Mach number limit to the range of flow
instability is rather ill-defined because of flow hysteresis similar to that observed by
McDevitt (Fig 1). The curve for the laminate slats is about 0.02 lower in nominal Mach
number compared to the hard slats. This displacement is probably caused by the increased
boundary layer growth on the relatively rough surface of the laminate slats compared to
the smooth, hard slats, for the increased boundary layer growth should increase the local
free stream Mach number for a fixed nominal Mach number.

The pressure fluctuation measurements upstream of the model given in Fig 3b show
that the flow instability on this aerofoil at a Mach number of 0.78 excites a stronger
resonance in the working section with hard slats. This is because the discrete frequency
of the excitation has been made to coincide with the fundamental transverse resonance
frequency of the working section by the deliberate choice of a chord length of 32 mm. The
resonance frequency (1100 Hz) had been excited previously by a loud speaker mounted in
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the plenum chamber and predicted according to a new theory 7 . This resonance condition is
particularly interesting, because although Fig 3a shows that the strength of the excita-
tion is virtually unaltered by the change from hard slats to laminate slats, Fig 3b shows
that the strength of the resonance is significantly reduced. Fig 3b thus provides an
example of the superiority of sound-absorbing slats for dynamic tests of aircraft models
at transonic speeds.

Fig 3b also illustrates an interesting feature of the sound-absorbing slats. The
resonance frequency (1070 Hz) is a little lower than with hard slats (1100 Hz). The lower
resonance frequency is attributed to a small increase in the effective acoustic height of
the working section, due to the movement of air into the laminate. Lower resonance fre-
quencies with laminate liners were observed previously both with these liners in the
4 in x 4 in tunnel 7 and with comparative 'mock-up' liners in the RAE 3 ft tunnel8 .

Fig 4 shows some typical results for the same aerofoil with fixed transition. Fig 4a
shows that the Mach number range for flow instability is still well defined, although the
level of pressure fluctuations is only about 20% of that measured previously with free
transition (cf the change of scale between Fig 4a and Fig 3a). Fig 4b shows that at this
reduced level of excitation, no resonance mode can be detected, even in the working
section with hard slats.

Fig 5 illustrates an interesting oscillation observed with free transition on the
10% thick aerofoil with a chord of 32 mm at a higher Mach number, about M = 0.90. Fio 5a
indicates that the range of Mach number for flow instability (0.88 M < 0.91) is much
the same with hard slats as with laminate slats.

However the oscillation frequency changes radically between the hard and laminate
slats. With the hard slats the frequency observed (1000 Hz) coincides with the fundamen-
tal transverse resonance frequencies previously measured7 with acoustic excitation. How-
ever, this gives too low a frequency parameter (0.77) compared with previous measur ments
on a nominally identical model with free transition in a much larger slotted tunnel .

When the hard slats are replaced by laminate slats the frequency observed is much higher
(1370 Hz), and the higher frequency parameter (1.05) is in better agreement with the
previous measurements 9 (see Fig 7). We may infer that with the hard slats the shock
oscillation is locked to the tunnel resonance frequency and is therefore best regarded as
a forced oscillation. This hypothesis is supported by the relatively high pressure
fluctuations measured upstream of the model with the hard slats in comparison with the
low pressure fluctuations measured with laminate slats (Fig 5b). The measurements in
Fig 5 thus represent a severe, though admittedly rather unusual, example of dynamic
interference.

Similar but smaller increases in the oscillation frequency were also noticed for the
12% aerofoils with chord 50 mm (with both transition free and fixed) and these have been
indicated later (Fig 7). For the thicker aerofoils (t/c > 14%), alteration of the slats
did not change the oscillation frequency. Hence most of the measurements are probably
free of dynamic interference, except when the oscillation frequency actually coincides
with a tunnel resonance frequency, as previously discussed (eg Fig 3).

3.2 Boundaries for flow instability

Fig 6 shows the flow instability boundaries measured on biconvex aerofoils of both
groups.

For the short chord aerofoils with free transition the boundary layer/shock wave
interaction is laminar at these low Reynolds numbers and there is a range of Mach number
of about 0.04 over which the flow is unstable. For the thinnest aerofoil, with t/c = 10%,
the measured range of instability is in excellent agreement with that observed with free
transition by Karashima9 . With fixed transition the flow is stable for t/c = 10% (just as
in Karashima's tests) and is also stable for t/c = 12%. For t/c ; 14% the flow is
unstable over a smaller range of Mach number of about 0.02.

For the long chord aerofoils, giving the higher Reynolds numbers, the boundaries for
flow instability with transition free and transition fixed are quite similar. No insta-
bility was observed for t/c = 10%. However, with t/c = 12% there was a well marked
instability with free transition and a weak instability with fixed transition; oil flow
tests established that with free transition there was a shock induced separation at about
x s= 0.7 c, which was eliminated with fixed transition.

When due allowance is made for the scatter in the measurements, inevitable because
of flow hysteresis, the results for both groups of aerofoils are in good agreement for
thickness/chord ratios above 12*. However for the lowest thickness/chord ratio (10%) the
instability is only found for the short chord aerofoil with a laminar boundary layer/shock
wave interaction. Hence wall interference on these flow instability boundaries is
probably fairly small, despite the larie blockaqe ratios of the models.

In ad lition the prese'nt rs' iii i ty rone fo)r the long chord aerofoil with t/c = 18%
and fixed transitirn ire in ,x-l lent aiireement with the Instability observed at the same
low Reyr' l n,,mter in i jl , rkin,T sec(ti(n with carefully contoured liners

I0
. In

contrast, tv -entn irt i t i r in i- f,-r t/(" = 20* does not agree with the instability
observed frevP-,j;ly i : n. ,t M ,'uh uimber of 0.71.
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3.3 Frequency parameters for instability and dynamic interference

Fig 7 shows the frequency parameters, wc/U, measured on both groups of models with
transition free and transition fixed. These measurements were made in the slotted work-
ing section with hard slats, except where there is tunnel resonance and the results for
laminate slats are preferred as having less wall interference (section 3.1).

For the short chord aerofoils (Fig 7a) with free transition the frequency parameters
lie in the range from about 0.72 to 1.04. The two frequency parameters observed for
t/c = 10% with the hard and the laminate slats correspond with the measurements presented
in Fig 5. With the lamijate slats the frequency parameter is in better agreement with
Karashima's measurements . With transition fixed the frequency parameters are a little
lower than with transition free, but no oscillation is observed for t/c = 10% and 12%.

For the long chord aerofoils (Fig 7b) the frequency parameters lie in the range from
0.85 to 1.15, significantly higher than for the short chord aerofoils. If we tentatively
assume that the frequency parameter is controlled primarily by the shock position, the
lower frequency parameter at the lower Reynolds number suggests that with thicker boundary
layers the mean shock position is further upstream. This hypothesis is consistent with
the observation that with fixed transition, and excessively thick turbulent boundary
layers, the frequency parameters are again a little lower than with free transition.

The measurements made with transition free on the long chord aerofoil make an
interesting comparison with other measurements made on thick biconvex aerofoils. Thus for
t/c = 18%, the frequency parameter in the present tests is about 1.07, compared to the3
somewhat lower value of 0.98 observed over a wide range of Reynolds number by McDevitt 3

McDevitt's measurements may be subject to some dynamic interference from the hard walls of
the closed working section which lowers the frequency of the instability, even in the
absence of a tunnel resonance.

Special tests with the present 18% thick aerofoils in alternative closed working
sections made with hard and laminate top and bottom walls were made to confirm this
hypothesis. These walls were uncontoured (in contrast with McDevitt's experiment) so that
the flow choked at comparatively low Mach numbers. However, just before chokin, a range
of flow instability was observed, as in the slotted working sections at higher , :h
numbers. For the aerofoil with c = 50 mm, the flow choked at about M = 0.71 ir th
closed working sections, and the range of instability was about

0.68 < M < 0.70 ,

(of 0.76 < M < 0.79 for the hard slotted working section). However, with the haid walls
the frequency of the instability (830 Hz) was appreciably lower than with laminate walls
(1000 Hz), although the level of fluctuation was almost unaltered. With -uese closed
laminate walls the frequency (1000 Hz) was thus a little higher than the frequency
(890 Hz) in the unchoked slotted working section at much higher speeds. Th' :hange in
frequency thus illu-trates an interesting consequence of the approach to choK ng in
closed working section.

Similarly, for the 18% thick aerofoil with c = 32 mm the flow choked ir tne closcl
working sections at about M = 0.77, and the range of instabiliLy was fromr about

0.73 < M - 0.74 ,

(Wf 0.78 < M < 0.81 in the hard slotted working section). However with the hard closed
walls the frequency (1030 Hz) was appreciably lower than with the laminate walls
(1130 Hz). Again with the closed laminate walls the frequency was almost the same as in
the hard slotted working section (1100 Hz) at much higher speeds.

Now in McDevitt's experiments the ratio, H/c, of the tunnel height to the aerofoil
chord, was 1.9, compared to 2.0 and 3.1 in the present tests for the aerofoils with
c = 50 mm and 32 mm. Hence the frequency observed with the hard contoured walls is
probably about 10 to 20% lower than would be obtained in an unconstrained flow, or with
contoured walls made of sound-absorbing laminate.

An investigation of the instability on the 12% thick aerofoil with c = 50 mm and
free transition gave similar results. The range of instability from both closed working
sections was from

0.75 < M < 0.76

(of 0.85 < M < 0.86 in the hard slotted section), but the frequency was only 690 Hz with
the closed hard walls compared to 870 Hz with the closed laminate walls. The correspond-
ing frequency in the hard slotted section was 820 Hz. Even with slotted walls we have
seen in section 3.1 that the frequency parameter on this aerofoil increased significantly
when the hard slats were replaced by sound-absorbing slats.

Of course, if closed walls are used much further away from the models dynamic
interference can be reduced. Thus Finkel I measured a frequency parameter of 1.13 for an
aerofoil with t/c = 20% in a closed section with hard walls and H/c = 8, in good agree-
ment with the present measurements for H/c = 2.4 in the slotted working sections.



3.4 Level of excitation

The small size of these models prevented the general installation of pressure
transducers to measure the excitation directly. However, the rms pressure fluctuations,
p , on the sidewall adjacent to the centre line of the models (at x/H = 2.5 in Fig 2) were
used initially to indicate the variation of the excitation of the model with thickness/
chord ratio and boundary layer thickness.

Fig 8 shows as functions of the thickness/chord ratio three typical sets of measure-
ments of the maximum sidewall pressure fluctuations over the range of Mach number. This
maximum generally occurs close to the middle, or just below the middle, of the unstable
flow regions shown in Fig 6. Fig 8a shows that for the short chord aerofoils the maximum
pressure fluctuations are significantly higher with free transition than with fixed
transition. Now a laminar boundary layer/shock wave interaction would generally be of
much greater extent than a turbulent interaction. Hence in an unsteady flow wider shock
excursions, giving larger pressure fluctuations, would be expected with a laminar boundary
layer than with a turbulent boundary layer. A similar difference between the surface
pressure fluctuations observed with laminar and turbulent boundary layer/shock wave inter-
actions was previously noticed for nominally steady, attached flow on a swept wing at
M = 0.90. (See discussion on Fig llb in Ref 12.) The dotted curves in Fig 8a indicate
the approximate level of pressure fluctuations which might have been expected for
t/c = 18% and 10% in the absence of the resonances discussed in Figs 3 and 5.

The measurements shown in Fig 8a relate to hard slats. With laminate slats (Fig 8b)
the maximum pressure fluctuations on the sidewall are a little lower, but the general
character is unaltered. Upstream of the model (at x/H = 2.0) the pressure fluctuations
are appreciably lower with the laminate slats than with the hard slats. This is because
the laminate slats weaken the forward propagation of the pressure fluctuations, rather
than alter the excitation at source.

Fig 8c shows corresponding measurements for the longer chord aero'oils tested with
hard slats. Again the pressure fluctuations are significantly higher for the thin
boundary layer obtained transition free than for the thick turbulent boundary layer
obtained transition fixed, and may give the better indication of the level of pressure
fluctuations at hiqh Reynolds numbers. These sidewall pressure fluctuation measurements
with transition free and fixed are both a little lower than the corresponding measurements
on the shorter chord aerofoils shown in Fig 8a. At first sight this is an anomalous
result, because for the longer chord model the sidewall static pressore fluctuation
measurements (at the fixed point x = 2.OH, y - - 0.25H) are relatively closer to the acre-
foil (y/c = - 0.50 for c = 50 mm compared to y/c = - 0.78 for c = 32 mm). However,
because of the form of the unsteady boundary layer/shock wave interaction (see the shadow-
graph in Fig 14 of Ref 10), the sidewall pressure fluctuations probably do not decay uni-
formly with distance from the aerofoil. In the attached flow at y/c = - 0.50 the terminal
shock is oblique and weak, so that the flow downstream is still supersonic. Thus the
pressure change across the shock would be comparatively small, giving relatively small
pressure fluctuations in the unsteady flow. Further away from the aerofoil at y/c = - 0.78
the shock wave becomes normal and the downstream flow is subsonic. Hence the uressure
change across the shock is comparatively large, giving relatively large pressure fluctua-
tions in the unsteady flow. Even further away from the aerofoil the shock wave disappears
and the pressure is continuous, qivinq small pressure fluctuations in the unsteady flow.

In an attempt to iet a better indication of the level of the excitation closer to
the aerofoils, the pressure transducer in the sidewall adjacent to the centre of the aero-
foils was moved from x = 2.511, y - - 0.25H to x = 2.64H, y = - 0.05H (Fiq 2). Thus for
the aerofoils with c = 50 mm, this transducer was located at 78i of the local chord, and
at y/c = - 0.10. Comparing Fig 9a with Fil 8c, we see that the pressure fluctuations art
sirnificantly higher closer to the model, as we wo,,,!a, expect, but they may be influenced
by local flow separations in the aerofoil'siwll I Junct ion.

We have seen that the sidewall pressure fluctuation measurements increase as the
boundary layer thickness decreases (Fii 8). In McrDevitt's experiments on the 18 tt ci'
aerofoil (Ref 10, Fiq 13) the rms surface pressure fluctuations are at the remarkaLly hi Oj
level of p/q = 40" and increase monotnical ly as the Reynolds number increases from
R = 1 . 106 to R 7 1 10h (Fig 9b). McDevitt is confident that tunnel resonance did not
occur (see discussion of Fig 11 in Ref I). Similarly, no stronq resonances were excited
in the low Reynolds number (0.7 , 106 ) 

tests in the cl]osed workinq sections briefly
described in section 3.3 above.

In order to bridge the gap between the present sidewall pressure fluctuation measure-
ments at low Reynolds number and the surface pressure fluctuation mea surements of Pef 10,
two special tests were made. The results cf these special tests are included in Fit 9b.
For the first test a pressure transducer was mounted (n the tclp surfae of the 184 thick
aerofoil with c = 50 mm, living pressir flLuctuat l,,ns at 78 ' chord (y 0) in the centra l
plane. The back of the trn sducer pro,j,,cted frorw the hot tom surface ()f the aer f( il, but
was covered by a small fairinq. The, surfa,,e pressure fluctuati-ns with lo-th free and
fixed transition were tbout ; q " , ind aprcximately twice to -orrospcndn'1 sidewall
measurements. Fir the sec-ond t(,st in 180 tiick bii,',nve-x win', with a 'liord of 2001 mm and
an aspect ratio of 2 was briefly testvd in the top ind bottm slotted (i - 40 rm) w,,Tkih
section of the RAII 3 ft tunnel. With free transitin the ;pe's.ure flu-tuatis at mild-
semispan (where an oilF flow ph it ra . in-, ,itl that the l,,al flow was almost tw, -
dimensional) increased stadil y from F ; - l . a-t P - n.4 - l 0. to j',g - 2,04 at
R = 0.7 . 10 . With fixed transition the levels were appreo'AJ.l' lower (from 1, ( ,I),

B-li



omitted from Fig 9b for clarity. Tests at higher Reynolds numbers were not possible
because of the large amplitude motion of the model on the sting.

Surface pressure fluctuation levels of p/q above 10% would generally be accompanied
by severe buffeting on aircraft components, even with the usual broadband spectrum.

In addition it is easy to show that this type of instability, with anti-phase shock
oscillations on the upper and lower surfaces, can produce significant oscillatory pitching
moments. Let us assume that the rms level of the pressure fluctuations between x/c= 0.80
and 1.00 is about 20%q (a conservative assumption in view of Fig 9b), and that these
fluctuations are perfectly correlated spanwise and chordwise. Then the rms lift over this
area/unit span is (0.40q x 0.2c) and acts at x/c = 0.90. Hence the rms moment about
x/c = 0.25 is (0.40q x 0.20) (0.65c) so that the rms moment coefficient is about

CM = 0.05

and the amplitude about CM = 0.1 (because of the nearly triangular wave form). This
torsion moment is concentrated at a discrete frequency in the flutter range. It could be
potentially serious if it coincided with a structural mode such as the first wing torsion
mode, which is normally in the range from wc/U from 0.5 to 1.0.

4 ORIGIN OF THE INSTABILITY

We have established that over a narrow range of transonic Mach numbers there is an
unusual form of periodic flow on thick biconvex aerofoils, but we have not identified
what criteria control the oscillation.

II
Finke gives a comprehensive review of possible theoretical models which might

explain oscilla ons of this type. Finke's suggested analogy between wake oscillation and
Eckhaus theoryH of transonic rudder flutter is interesting, but invokes an inviscid flow
model. The theory predicts a wide range of frequencies and Mach numbers over which flow
instability is possible (Ref 11, Fig 51), but manifestly this prediction is incompatible
both with the experiments cited there and with the narrow range of frequencies and Mach
numbers observed in the present tests. Finke showed that with laminar boundary layer/
shock wave interactions the theories of Karishima

9 
and Dvorak14 correctly predict the fre-

quency, but that the theories are restricted to small-amplitude shock oscillations and are
inapplicable to turbulent boundary layers.

Recently McDevitt 
0 

has clearly established that on a biconvex aerofoil with
t/c = 18% and a turbulent boundary layer/shock wave interaction, the shock does not
generally oscillate about a mean position. Instead, for most of the region of unsteady
flow, successive shock waves move upstream from the trailing edge, alternating between the
top and bottom surfaces. McDevitt suggests that this is a special form of oscillatory
flow, classified as a type C motion by Tijdeman

15
. Within a narrow range of Mach nimber a

shock wave motion of this type has been predicted from a numerical solution of the full
Navier-Stokes equations

4 ,5
. However the computations took 7.5 hours on a CDC 7600

computer and even with more powerful computers it is unlikely that this method could be
applied for routine calculations on more realistic aerofoil sections.

An alternative approach is to ask whether the present measurements suggest well-
defined conditions for the onset and termination of the instability, which might be
applicable to other aerofoils, and also provide a clue as to the physical cause of the
oscillation. This question is prompted by the observation that the narrow region of flow
instability shown in Fig 6 is displaced roughly 0.1 in Mach number above the curve for
critical Mach number as a function of ickness/chord ratmo, derived from the transonic
similarity solutions given by Spreiter and confirmed by recent measurements C' Fiq 13
of Ref 17).

As a first attempt to explain the phenomenon, the flow instability boundarif- given
in Fiq 6 are replotted in Fig 10 in terms of the transonic similarity parameter:

K = (M
2  

- 1)/[ M4
/3 ( + 1) 2 /3 (t/c)2/

3  
. (1)

The critical Mach number now occurs along the straight line K = - 1.42, corresponding with
the curve of Mcrit in Fig 6. Fig 10 shows that the values of K for the onset and termina-
tion of the instability vary appreciably with thickness/chord ratio. The instability is
unlikely to he inherent in the transonic inviscid flow, for such an instability would
always start and stop at particular values of the transonic similarity parameter. Hence
the instability probably results from a critical phenomenon in the viscous transonic flow.
This conclusion is supported by numerical solutions of the full Navier-Stokes equations
already available for t/c = i2% (Ref 17) and for t/c = 18% (Refs 4 and 5). The steady
solutions (marked by triangles in Fig 10 and joined by dotted lines) roughly enclose the
unstable flow reqion found with fixed transition, and thus indicate that there are
unlikely to be fixed values of K controlling the instability. In addition, the oscilla-
tory solution found for t/c = 18W disappeared when the viscosity was eliminated.

A simple explanation of the phenomenon might be that the boundaries of Fig 6 corres-
pond to local Mach numbers for the start and stop of the instability, which might be
almost independent of the thickness/chord ratio. These constant Mach numbers would be
determined by some as yet unidentified feature of the buundary layer/shock wave inter-
action. Now 'he local Mach numbers upstream of the shozk wave could not be easily meas-
ured on these small models, but approximate Mach numbers upstream of the shock can be
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obtai,'ed from the measu-ed shock position and Ref 16, as we shall indicate. This approach
is rea,,onable, because the shock position must be a crucial factor in determining the
instability, and we have already suggested in section 3.3 that the shock position controls
the oscillation frequency.

Fig lla shows the s eady shock position previously measured
9
,
18

,
19 

in different wind
tunnels on a number of thin biconvex aerofoils with attached flow, plotted against the
transonic similarity parameter. Even for these thin aerofoils the shock position is up-
stream of that according to Spreiter's theory for a given value of K. This discrepancy
must be attributed to the fact that Spreiter had to use the inviscid shock jump relation-
ship, whereas in the real viscous flow the local thickening of the boundary layer at the
foot of the shock produces an appreciably smaller increase in pressure. Oil flow studies
on the present, generally thicker, models show in Fig llb that both close to the onset and
completion of the instability the shock positions straddle the mean line for the thin
aerofoils taken from Fig fla.

The method devised to predict the approximate local Mach number immediately upstream
of the shock utilizes the mean line of Fig 11. For a particular aerofoil at transonic
speeds the pair of free stream Mach numbers for the onset and completion of the instabil-
ity define a pair of values of K, and hence particular values of xs/c from the mean line.
For the same shock positions, Spreiter's theory determines a pair of equivalent values, K.,
and hence equivalent free stream Mach numbers, Me. From these values of Ke, Me and the
results of Spreiter's theory in Table Ic of Ref 16, approximate local Mach numbers
upstream of the shock may be calculated for a particular thickness/chord ratio.

Concerning first the predictions for a turbulent boundary layer/shock wave inter-
action, Fig 12 shows that the local Mach number for the onset of the instability varies
from 1.24 for t/c = 12% to 1.15 for t/c = 20%. In contrast, the constant local Mach
number for the suppression of the separation is 1.24. Karashima's measurements for
t/c = 10% with a laminar boundary layer clearly show an instability for the Mach number
range from M, = 1.20 to 1.24, in fair agreement with the present predictions.

[0
These approximate predictions are well supported by McDevitt's recent measurements

of the flow instability on an 18% thick biconvex aerofoil at R 1= i06. Thus Fig 13
(after Ref 10, Fig 25) shows the regions of type C flow instability 5, and the correspend-
ing frequency parameter, as a function of free stream Mach number and angle of incidence.
(In a type C flow instability a shock wave moves upstream along the aerofoil. The shock
wave then leaves the aerofoil at the leading edge and propagates upstream against the
incoming flow.) Fig 13 also includes values of local Mach number, Ml, upstream of the
shock derived from Ref 11, Figs 27 and 28. When the free stream Mach number increases
above the critical value (M = 0.71), M1 increases until at about M = 0.75, with M = 1,2(0,
separation starts, together with the oscillatory flow. The mean shock position t~len moves
forward until at a free stream Mach number of 0.76, M1 falls to about 1.14 on the top sur-
face (Fiq 13al and 1.10 on the lower surface (Fig 13b). With further increase in free
stream Mach number, the mean shock moves downstream again, until when M = 0.78 steady flow
is re-established with MI a little greater than 1.22 on the upper surface. A 'stead;'
separated flow then extends from the shock to the trailing edge. This ywqion of steady
separated flow is preceded by a small region of type A flow instability .' (In a type A
flow instability a shock wave performs small oscillations about a mean position on, in
aerofoil.) Thus in this high Reynolds number experiments, with a natural turbulent
boundary layer, tne aerofoil provides the condition

1.13 . M I.' I -4

over the observed regime of instability. This condition is consisterit with thl ilorie
in Fig 12 from the present tests at low Reynolds numbers. The onset of the unsteady I 1,,w
corresponds to the sudden forward movement of the mean shock psi ti,, which w, uld tradl-
tionally be associated with severe flow separations. (See the discussln 1y ears t
Figs 32 and 38 in Ref 20.) Tentatively we ray conclude that with a turbulet l- umdar c
layer a necessary (but certainly not a sufficient) condition for th,, irnstbility t''
develop on biconvex aerofoils is that tne local Mach number )ust upstre,im i th, shck
lies within the range from about

1.14 M 1  1.24

This unstable range corresponds rouqhi, wit h the rin-n tor I tn. et t.heit -. i

separation on a wide range of aerofoi ls (Ret 20, sent i 1ii .2.1 . lh()Weve, I 1,:i 'I, i,
of Ref 10 give values of M1 ,f 1.23 and [.14 respectively, lust 1-l, w ind i t i,'',

unsteady flow region. [Hence the values, (,f M 1  f r the very unstgteady f 1 w 1 1,i en:(tt4,1 1
Fi-s 27 ind 28 of Ref 10 (and used in Fiq Il) c'uld be a little misleading. Pc 'I'1t ') .;.
lished measurements 2 [,, a& liri,- 14 1i- , ,t-x wini l,.. ti- , ndit i.n:

1.21 M I 1 4

The frequency of the sh-k i, [lot or, is trahl. rltt, 1 t,, the tim tijkin f, I
disturbances to travel upstream over i let vit, , , frmw the trailing edge to, the me.i,
position which will generally he in t roire , n f ful ly sepirated floJ. [.ji 14,j !h;.w.; ts;it
the frequency measurements for the dliffc ii-nt t /, rait is with fixed transiti(n iai,
oorrelated by this length and [h,, r .-i ,tIr,,,m ,el '-ity, in terms ti the trans, nic ;If I !,,
ity parameter, K. The present meiturement ; ite in fair aqreerTent with fe.'lir) i, ' i
ments -overinli t/c rat os from I, t ,., rt i, infirred from those tet 1.

Miny yemrs (vr, f':rickson ind , ig ,-i, . -- p ,l sted I simple emfir i.ll f, - 1i 1
the aterodynamic frequency par t.irf, , I St ;, -: [r' | r t 'ri-,l to the tii,'- tak,.n - ,

A. . . . . . . " '. . . . . . . . . . I i . . . . . 1 l - " I I u , , ,



disturbances to travel from the trailing edge to the shock position:

wk/U = A = r(I - M)/2M . (3)

Fig 14b shows that the measured frequency parameters are only about 70% of those predicted
according to equation (3). However, despite the scatter, referencing these measurements
to the predictions of equation (3) does reduce the wide variation which occurs with the
transonic similarity parameter in Fig 13a. Hence the mechanism of the shock oscillation
must be related with the wake oscillation, which starts at the trailing edge.

This hypothesis was confirmed by a special test made with the 14% thick aerofoil
(with c = 50 mm) modified to incorporate a small trailing-edge flap, which could be freely
hinged at 75% chord (Fig 15). A pair of heavy and light flaps of the same external
geometry were provided to briefly investigate possible effects of the inertia of the flap.
With the flap locked the instability was much the same as that measured previously,
despite the rather severe three-dimensional disturbances provided by the flap 'stops'.
With the flap unlocked there was a small mean flap deflection (determined by the aero-
dynamic hinge moment and the static moment of the flap) and small flap oscillations were
allowed. These oscillations were not measured, but they must have significantly altered
the boundary condition on the wake at the trailing edge, because the excitation in the
Mach number range from M = 0.82 to 0.84 was severely reduced, with either flap. At some-
what higher Mach numbers, transonic 'buzz' was observed, with either flap oscillating, as
indicated in the following table:

Flap Range of instability Amplitude of buzz
(M) (0)

Heavy 0.88 to 0.90 at least ±10 (to stops)

Light 0.89 to 0.90 roughly ±5

The larger amplitude m~tion of the heavy flap during buzz may be readily explained.
According to Lambourne" the buzz frequency at constant Mach number is given by:

W = /(C A + CH)/I , (4)

where CA = aerodynamic hinge stiffness (identical for both flaps),

CH = elastic hinge stiffness (in this test - 0),

and I = moment of inertia of flap.

Hence the buzz frequency must be lower for the heavy flap. Now, in general, changes which
lower the buzz frequency would be expected to increase the buzz amplitude, as in the
present tests. This has been confirmed by experiments of Saito

2 4
.

In contrast to the strong influence of the trailing-edge boundary condition on the
aerodynamic instability, the leading-edge geometry has a comparatively weak influence.
This was demonstrated with a 10 mm lona x 100 mm wide piece of 30 grade carborundum paper
was wrapped round the leading edge of the 18% thick aerofoil with c = 50 mm. The Mach
number range for the instability and the frequency were essentially the same as with
transition fixed with ballotini. However, the amplitude of the pressure fluctuations was
reduced, conffstent with an excessively thick turbulent boundary layer. Finke has also
demonstrated that the shock oscillation is relatively insensitive to changes in the
leading edge geometry.

Finally it should be emphasised again that the instability boundaries (Fig 6) are
not significantly influenced by tunnel interference, despite the high blockage ratio of
the models (9% maximum for t/c = 18%, c = 50 mm). However, the frequency parameter
measurements (Fig 7) may be subject to some interference, as discussed in section 3.3.
Tunnel resonance frequencies were measured with the aerodynamic excitation provided by
biconvex aerofoils over the Mach number range from M = 0.78 to 0.90 (Fig 16). These
measurements at the first resonance mode are in good agreement with theoretical predic-
tions and previous tests made with acoustic excitation. In particular, for this range of
Mach number the resonance frequencies measured were unaffected by an increase in the
depth of the plenum chamber from d = 0.67 to d = 4.00, as required by the theory for Mach
numbers greater than about 0.6.

5 POSSIBLE INSTABILITIES ON SUPERCRITICAL AEROFOILS

Additional tests are needed to establish if instabilities in the structural fre-
quency range occur on supercritical aerofoils within the flight envelopes of interest.

The narrow range of Mach number given by equation (2) is al o associated with
excitation on the 11% thick supercritical aerofoil tested by Ross at CL 

= 
0.55,

R = 2 - 106, over a wide range of free stream Mach number. Hence the local Mach number
criterion given by equation (2) may be also valid on supercritical aerofoils, although
this single result is certainly not conclusive. For this aerofoil the mean pressure
distributions and schlieren photographs suggest that any separations must be small. This
is consistent with the low amplitude of the excitation and the monotonic downstream shift
of the terminal shock wave as Mach number increases. The frequency parameter, 9/U,
varies from about 0.32 at M = 0.75 to 0.10 at M = 0.87. This is only about 50% of that
predicted according to equation (3). However, the pressure distribution on this aerofoil
is completely different from that on the conventional aerofoils used to derive equation
(3), or on the biconvex aerofoils.



6 CONCLUSIONS

Tests on a series of small biconvex aerofoil models suggest six main conclusions:

(1) A flow instability can develop at zero incidence at transonic speeds for thickness/
chord ratios varying from 12 to 20% with both laminar and turbulent boundary layers. For
a given aerofoil, the region of flow instability is restricted to a narrow ranqe of Mach
number (Fig 6) and is influenced by the state of the boundary layer.

(2) The origin of the flow instability is not yet fully explained. However, it is
essentially a viscous phenomenon (Fig 10). A necessary (but not sufficient) condition for
the onset of the instability is a local Mach number, Mi , just upstream of the terminal
shock in the range from about:

1.14 < M < 1.24

(3) The frequency parameter of the instability is displayed in Fig 7 and is probably
determined primarily by the time taken for wake disturbances to pass upstream from the
trailing edge to the shock (Fig 13).

(4) The unusual and sharply-defined (Figs 6 and 7) nature of this instability makes it a
useful test for the methods of predicting unsteady viscous transonic flows now being
developed, with particular reference to the Navier-Stokes equations.

(5) For instabilities at frequencies close to tunnel resonance the tunnel walls signifi-
cantly alter the instabilities. This dynamic interference may be reduced by replacing thu
hard walls of the conventional working section with sound-absorbing walls (Figs 3 and 5).

(6) Tunnel resonance frequencies measured with the aerodynamic excitation provided by
the flow instability are in good agreement with previous tests made with acoustic
excitation, and also with theoretical predictions (Fig 16).
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Experiments on a Turbulent Unsteady Boundary Layer with Separation. 1-

Sergio D~e Ponle. Arturo Baroni

Polite ciico di MI lano st it ito di hi gegiiria A erospa, ale
Via ;olgi 40

Abstract201133 Mi lano, Ital\

ITurbulent separation is an unsteady phenomenon. in ,tsolf I,,ol. in- st.!- oxtern.Al
conditions. In this experiment a cyclic variation is produced7 in th. . nor~ ofa

tr'llboundlary layer wind tunnel with variable masr'TrAdi. I. t(' th C/l1
va:riatior., the point of' separation in ~us-tnvconditions is hit th- ctrea ri-
wise direction approximately, one third of the hot. ar' It-r lo:h

AC ho-is naly'sis Of the velocitvn Frofilos, mad . '~
1 -th. 1>0, S'Ows

no significanit chanqge in profile behaviota'-, except a la lnop ir-ti( il (ttac:'tmt-?Et.

This rosult seems to be important inl eXplaiil,' i".soino 'a~ 1 t-
The experimental conditions ( roeduceeI Fro tzone:al e 1 %' r 'Ise~

crder of nmaqnTitude, both to blade 'tall all st all fa eet.

Hz, the streamwise lon,,th is 1 1. r.n and1 tie 't 'r - voli":.* itt
deccer-tion is about 410 ms

Tice obs-rved? time la, i n s etari t: 1 c A 710
w,i i c , i r oo - i t 1 s ome oes c i lat i. a i r'

Symbols
nresso.nr( ('c,iictn

p hs an le ( oe's)
X strearveise coordlinate (!:I:)
Y normal to wall coordinait, I I~

1) Introduction
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2)Experimental Facility
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Tile inlet Cross-Section sn .1 x 3 m and thle u1seful lerfgth Is 1. !1. l'iur, .
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unsteady velocity profiles,even

in the conditions of maximum
flow changesas at the phase

Y(M4 F=2700 .Also the velocity at the
outer edge of the boundary la-

yer is the same. It means that
the boundary layer itself and

station 2 the external potential flow do

40 phase270P not contain unsteady effects.
Integral quantities will there

* usteay fore coincide. Only the wall

A unsteady shear stress is not determined,

as the boundary layer thichness
A is small and the dimensions of

A t11 wire, oven ',hor. in conltact

A to the ':w.ln not 7ll':! to -o
ii-to the lminar -. lavoer. Ap-
nroach'ini the '.,all, no signifi
cant reduction in turbulence
was noticed on the oscillosco-

20 A pn.
.!hen both flo,:is, steady

A and unsteady, are attached, it

a is possible again to observe
similar agreement between stea
dy and unsteady velocity profi

A los, also in the region of cy
clic separation, as in station
5, confirming that unsteadyness

is not in the boundary layer

behaviour (Fig. 5).
Before discussing separated

A A flow results,we should observe
1 A"I'k A thatwhen a turbulent fluctuation

A has a negative value, the ave"

rage value of hot-wire signal
V(mIs) is no more equal to the mean

0 40 velocity,due to the non linear
response of the instrmaent (e-
ven when the signal is lineari

Fig!. 5 Velocity profile upstream separation zed by analogical or numerical
means).

At the zero velocity value, for example, at the outer edge of the reversed flow, the ave
rage hot-wire signal is oqual to the sum of its zero velocity value plus the root mean
square error.This is a woy to detect the upper edge of the reversed flow with hot-wires.
in reversed flow the data presented are affected by this error and should be interpreted
in this way.

The observation of the behaviour of the velocity profile at station 5 approaching se-
paration, in the range between 27 0 0 and 3300, gives an example of what happens in the flow.
At 2700( attached flow) and 3300( separated flow) both profiles are close together despi-
te of the large data scatter. At 3000, on contrary,the flow is separated in stead,; condi
tions, ':TMle it is attached in the unsteady condition. The outer parts of the velocit.
profile, up to external flow, seem to coincide ( Fig. 6)

Tho sane happens in reattaching conditions, for example between 600 and 150 ° , at the
same station (Fig 5). Reattachment retards with respect to the stead,/ flow even in a lar
ger way. Again, in attached (1500) and separated (600) conditions, velocity profiles are
close together.

7) Conclusions
Separation and reattachenent show a time lag which is much more larger thon the one

* ncarim j in attached boundary layers(2). The only way to explain thi- 1-7 in separaltion
and rnnttachement, when no other unsteady ohenomena are present, is the time required to
build up and destroy the reversed flow rejion. As in reversed flows velocities arm, snall,
compared to outstreua velocities, time scales are larger.Furthcrmore, wvales will be mor-
(iL'2firnlt to idestroy than to build up, Ile to the different intensit' of shearing stresses.
This is 'l1 so confirmned by te Cact that the time lag seems to !- lar'amr in reattachmelt
t:anr i. ';--aration. In this sense, this lal is mainly nat ter of bouidary layer-outstrc.i
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DISCUSSION SUMMARY

by
W.J.Mykytlus. Consultant

Dayton, 01hio, US

The subject meeting consisted of three sessions and a round table discussion. Comments on each
of the sessions were made by a session recorder and are repeated below. A resume' of the round table
discussions then follows. The papers presented are listed in the meeting's proceedings report and In
the following attachment.

1. SESSION 1. PREDICTION METHODS AND COMPARISONS WITH EXPERIMEN'I3_yART 1.

Recorder: Mr D G Mabey, U.K.

The paper presented by Prof Dowell gave a fine review of the problems of predicting attached,
separated and transonic two-dimensional flows. One of his conclusions deserves to he quoted in full.
"No transonic method can be expected to give useful information to the aeroelastician unless thle mean
steady flow it predicts and uses is accurate. Hence it Is highly desirable to be able to input directly
the best steady flow information which is available including that from experiment. The latter would
include implicitly viscosity effects on the mean steady flow; in particular it would place tile mean
shock in the correct position."

The paper presented by Dr Yoshihara considered attached, transonic two-dimensional flows, using a
viscous ramp method combined with a transonic small perturbation code.

The paper presented by N javelle described a method of calculating three-dimensional time depenident
turbulent boundary layers. The turbulence model used was similar to that in use at NASA Ames. Thle
method looks promising, but needs to be combined with inviscid flow solutions for the prediction of loads.

Dr Geissler's paper covered a wide range of three-dimensional unsteady viscous flow proble-ms, with
considerabl sccess. However, all the comparisons relate to subsonic flows.

(Additional comments were made by Mr Mabey in a letter to Dr J J Olsen as follows. "I think tile

most obvious common factor of the theoretical papers is that at transonic spee~ds the frequency parameter-

rapidly becomes comparatively unimportant (&.g. phase angle vs frequency parameter). Similarly tic.

effect of non-linearities is confined to low frequency parameters.")

2. SESSION 11. PREDICTION METHODS AND COMPARISONS WITH EXPERIMENTS, PART 2.

Recorder: Mr J Giesing, USA

The following comments are made on Houwink's paper on boundary layer effects on unsteady airloalt.

Non Separated (Attached) Flow

A combination of experiments and theoretical calculations (NIR-LIlRAN2+Boundarv layer Analyst,) w.-1,
done at NLR, on a NACA 64A006 airfoil with flap. The following points are- madie In the papt-x

Viscous boundary layer effects produce a 'dc-cambering' oit tit airfoil with f lap. I t- s t -i i
thickness on the uipper suriac.' is greater than that (on the lower slirfaci re.sult ing in a iIIti i-t It, t Vit

flap deflection. The viscous e-ffe~cts may be( thought of as a sort of flap act ing in .Ipposit Jon1 til th.-

physical flap. Such a correc t ion to thle thellrt I( al cal.-uiat ion gri-atly iriprot- scorruiat lout, wit 1.
experimental data.

Thie v iscous c or rec t ion s d im in ish a s t I r.qll.-n nt fl reilsis.

Wid tunnel wall correct ions are- Important it acculrati k ofI I dli! tons of thllrv arld0 cspvl 1110t111 itII

be- obtained.
I" Itg soph ist I .At Id ti i, It body t ranson Ic tlIt 'or iis anti I, t. I-- ait(, r at I, I ian th Iin i'od'l thI i ol ite

viscills ,'flccts art- not accouiltcd for. Viscous ti- lls, uld tiib,5 I- It . III act !n~II tlolo-

other and fin many cases if both art, ignored Crrols will (an<-i . It J~ist inc il th.-.--I.1.1- l

for a loss in correlation may result.

Separated f low can c omple tel-Iy change tile- chart 'I+r and. n11-, hallr II ci o h(I, walvt ii.'
t 

ion. IT, lI. .. t

pre-sented tile shock wave movce in the, iI
1
psitv dir ,111 I ilin to ilhal lI'! at11n. b.i I1111. lI l IIap i's.

Resonance appear-Ii 11 ri 50.1.ata wil, Ih was not ttl 1iind,-0.1t 111o. l 1 1 1 1I t~- 1 iid ISS,

rllnnti r,.sinanci-i or ai Blizz mc,~ fia~i m.

Ill, pape-r b\- Messrs Ioitl, Ag 1lilt, lal i'it .,t. i-iiiir i-l ii\ gl'll( .out 0.1 I I l- Is 4 t

iinsteaily i-iiindary laye It a 117 lw - .- esl.nal Iran-il iiiiiiii5! ill. Th ttan-niti al,olit in , i,

mniicl Ing vliiii'i -lte-I, . lwn at th., ai -I it , Ia * istcal4 iol I il SI\l atliI 1 lb. i.'I

lax-.-r displac'mnt lith i u TI - it A 71, lhinl '!a. ha.'' r le? - 1 ,n ll.1,1 h a 11' 1 ,ll~i I~~I Il' i

-(nsilder- Ic -h a-: (I IApplvIng the Kitla onI-I i at i.- 1-,itiarv lay., ' an1,i I.) l lt i -

;- .- t . 1 , sp a In lb it. n t 1) r I jy at In Ii , , .it '? 1. U 1 in.-: ". v



Only nonseparated flows have been considered so far. Authors believe that the method will converge
for separated flows due to the special properties of such flows.

T hese authors also concluded that wind tunnel wall corrections are imiportant for accurate correlation
o1 experiment and theory.

The paper by gaer. Payne and Baldock describes an experimental and theoret ical approach to tie
understanding of trn87ni _and fiscous effects on the flutter of a conventional (non-prrtca)wn
in three-dimensional flow.

An approximate theory which uses a two-dimensional steady transonic small perturbation method, with
and without viscous effects, along with the linear the-iesoa method of Davis, is presented.

The experimental data for the simple swept and tapered wing flutter model shows a dip In flutter
speed below that predicted by linear theory at M = .8165 and a subsequent rise above it at M .881. 'Tite
dip in flutter speed is caused by an increase in lift curve slope due to transonic effects. The sub-
sequent rise in flutter speed above that predicted by linear methods I., caused by an alt shift in cente-r
of pressure due to transonic effects.

Viscous effects on flutter tended to reduce the transonic Increase in lift curve slope and reduce
the aft shift in center of pressure. Viscous effects, then, offset the transonic effects of thickness.

The paper showed that as the mean incident is increased, the flutter speed is increased.
Finally, wind tunnel wall effects were considered Important in accurate correlation of theory and

experiment.

In the paper by Shamroth and Gibeling the general Navier-Stokes equations are solved. The total
temperature is held cntant for two-dimensional unsteady separated flow. The method also consider,
compressible flow and has a turbulance flow model. Contoured coordinates are used for a noniterat lye,
coupled, stable and consistently split method of computation.

The method is efficient requiring 15 seconds per time step on the CDC 7600 (using 300)0 grid points).
The author says tits time will be cut in half In the future. The method requires 601-1 50 tine steps tot
moderate incidence and about 250 time steps for high Incidence.

The method was applied to airfoils with starting, time dependent, leading edge vortices. Good
qualitative correlation with experimental data was observed at high angles Of attack and at low Mach
numbers. Major fe-atures were clearly shown such as start ing vortex and secondary le-ading edge vortex
andi secondary leading edge vortex of negative sign.

In the future transonic calculations, including shock wave calculation, will b, undertaken.

General Co nscnsus

'the following consensus seems to -.merge from the papers ot this Session I1.
Thickness (and inc idence) effects in transonic flow can not bk- considered withlout inc lud ing vi scou=s

effects. Results of includilng only one effect may bie more in error than int ludling nither i -ctt
Wind tunnel wall eff ects are very important in tranionic tests andl c-aI(III at ion s.
Quasi steady hounds ry l ayec effects ace adequati- for at taelio I liii but not (or steparatc I -dlo.

(evneral Comments

L.inear tht-orv along with "icorrect ion fac tors" will continue to he the, hackhiint ,i the. prii,~ ti,'ii
methods tIn indisti y tor some time to come. Correct ion factors are- isual lv ia,- d ,on steidy wind i miii-I
exp~r iments or steady i low calculat ions using finite element I ran,,oi hcorv. ii,er-ollr,-, vi or,, in
tile a reas ot s'teady thlree-imensional transonic flow calculat ion with. viscois, iltcted at,- ied to

deve-lop accurate ,-rre tin factors. Also efforts; should lie exte-nded to tid ouit th, 2e1t, I l-',-

On t Clo, liI icth ic Iactors.

1. 1SSi-yluO- Ill-. FXIRIMINAAI. Sll'lill'.ES

R- orit i IrKT 'w'aani, Netiirlanuls

All pipers I iul -hieso III re-t ected clearly tile. i ndiitgs cit a antftill xav-mlinati-,n i' I c>

-;",I t'~ II ' pap, V', 7ti ilti-I tol the understanilng o1 var ills re-al flo1w I s itt d-!

to t iail" , Ilow rt ...i Ing.

D~avis I il'ci-- I lRi'vtiiilii n~imblr A1 lie t s III unllt.'auy t Tansin litI (liw whiG, h'. 111i hu i wl t I

poorly till now. ,I t hiili not surpr is ingly. ill' coln, lidi,'lit t i. hasis of rIsi . 'til it)'l o~ I .. n,!

4ilpeir it itll an I tI s with1 ntutlral boundary laver t tatI t ion1 t haItfvioI tiii' I , I i ir- i i' t

in separat-1I low. I 'i, contains ti,- wairtilg that at ttiight -Ioirwail os,- o wind) ttub-I dauta rs% '.

danigeuii...s andl i'iiphri-s~' thetii' Ti oi ising plipi'rlv dlisili lralsit Ioii sI ips. iii-' t.ll acll -t-i

data ha-cP will hei madl. availabhle Ior long ,til( will ptrlidt t11 ine' ojpuirlnit I,, tI o(iat i',tl wtil ot1

dat a.

1 6rscbIlfl pri-se'tt'l In (uis papt-r.'xpi'rimen'ttal pn-lill isti lint ion,, lor toniis iillalt ilig wini,-I lap

mean I lap anglo-s anil wing -mogli's of1 attack. II.' iiisc,,ssi-il the tlel' ut thIi gad I, ti sot gilimit rv.

In th, liglut ofi Intlire act lvi' l'lntioii appli(cat Ions Fir-ohlng liata poi1ilv t,,arlu Ill,- ''giniting ot mIii

vxtctusivi' stuiflis .llVi' ring thi'or.'t Icl- work nd it hiiglur 'p,--I a, w,-i I .

MaLey prisenti- I' ve-rv I li-ar luiistl o-xplilual ton1 ot I. wit on lii 1111 'dv -- patated I low - ut
I'iloiVest ahniollqs, lnlclliuh'll liv A fasi-Inat (Ing movii'. Hvi plit-I to ullavfl ti-tI st Ir s In I' cisi II tat i 1)g

sillil k- Iindulcil sipirat litil, (Mat-il nu1mber 'ipst rI-am (ilt lii shlllk , fi i-quli'tlcv piiantl it i I wit Il(lI shloiilu I da so
o'-ter gi Ifn an v mo I I n h o f II iiI' - Ilow. 1,-tie i. (i Iat 110 sn, ins - mo st 1 tr nl , -,l I Ii li s v'mmt t iI (tsi'an fI olw i onIhl-
t in,,. I t wilt 'i- Worthlis igatie illi hw tii- inst l~IIhtyivilii It orpa t IalI irloi Is. Polishl -
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de Ponte described an ex;erimental study, the development of a boundary layer under a cyclically
varying pressure gradient, of which the results show a remarkable lag in separation and reattachment.
Also these results appear suitable as test data for theoretical verification and may be very useful in
helicopter blade flow studies. Continuation of de Ponte's work deserves to be pursued with great interest.

4. ROUND TABLE DISCUSSION

ChaIrman: Dr J .) Olsen, USA

The following paragraphs prepared by Mr W J Mykytow attempt to reconstruct and assemble some of the
comments made during the round table discussion.

Airload Predictions

Very good progress has been matde in the prediction of transonic unsteady airloads tor unseparated
flows and w ,aker shocks (some, airloils with extensive regions of supercritical flow are excepted) because

of possible Rt-ynolds number effects.

Invisc id Flow

Iransonic small disturbance theory overprtdiclts airloads since shock movements are too large. The
tango of aerodynamic parametet inearity versus angl, of attack increases with higher reduced frequency.
flowevr, flutter is critical at lower reduced frequencies. Inviscid three-dimensional methods should
soon it availablt. Iransonie small disturbance theory is likely to yield in time to the lull potential

me iho.

Viscous Flow

Viscous effects reduce alirloads and are opposite to those from airfoil thickness. These effects

decrease with increasing reduced frequency.
Predictions ot the correct locations and strengths of the shock in thtee-dimensional flow are an

essential prerequisit tr accurate transonic unsteady airload estimates.
Ialculations for two-dimensional flow with strong coupling between the outer inviscid flow and the

inner viscous flow show that tie shock strength and shock movements are reduced. These results produce

better accord with experimental data. The viscos analyses for 2D require four times the computer effort
for inviscid methods. The procedures appear to he, extendable to 3D flow.

Sv'eral comments were made concerning strong shiock-wave and boundary layer interactions, angle of
attack tfct, and separated flow. the practical applicability of available mathematical-physical models
was quest itoned as well as their likely high costs.

lit general conclusion seemed to be that no reliable methods exist and, therefore, need to be developed
based on fundamental theoretical and experimental research. This research Is requited since cruise
speeds t fiitiir. aircraft may be closer ,oi separatioen Ituniariti!;. Also, tronsr. fc man-utr g tot

fighter aircraft will require operations at higher fixed and movable surface angles of attack.
I-xperimental data show that severe sbock-boundary layer interactions produce shock motions opposite

to those expected (i.e. forward shock motions for further Increases in incidence at lower frequencItes).

Pavis' paper discusses the balance between chordwise positive and negative pressure "lobes" for dttached
boundary layers and warns of the potential effect of Reynolds number on this balance of unsteady airIoads.

Dletermination and simulation of the time dependent transition point are important tactors.
Reattachment time scales since back flow velocities art lower.
Ways of adding viscous effects to Euler equation approaches should be Investigated ati could piove

1 r1it tul.

Both finite ditterence and integral metiods for Including boundary layer et fects shoitld be turthei

invest Igat ed.
Navier-Stokes approaches will be useful but costly. They will not be employed to Ilutter calcula-

tions In the foreseeable future. Some broad qualItlve agreements were shown for applicat ions to high
aonglt, lower speed separated f low. Other comments made, about tie utility of N-S approaches nclude:

a. Evaluate more economic methods.
h). Identity physical phenomena.
c. Understand factors affecting separation under adverse pressure gradlenta.

f. Idfentity methods to minimize shock induced separations and dynast instabilitites.
e. Defice and guide experiments and equipment developm 'nts.

Control Surf aces

Design tit transonic maneuvering lighters and active controls rtqn Ites atcuiate tithods I-,t pleditI in1 ,

tfsttadv aerodynamic airloads on IL. and IF controls at high angles of attack ot with gaps, slots, speclal
dtvices, tetc. these art lacking and require development. Experimental dIta at htghti Rttioldts nimlts
atnd MacIt numbt'rs Is also a high priority research task.

An '.valuat ion of sophlst icattd methods ( including Reynolds numbetr avttaglig in Navlt'r-ttOi es equat Ion
apprtatl t-e) would be valuable to dtel Ine potent lal prtdit Ion methods and to del Iota!t appl I afil ity of
les sophist lst td methods.

R search is rtqu Ired for higher st-ftO-tt ivqunctes whatt phttnomtnta tAY 11ot It qitasI-sttady.

txpr ment al M,asurtment s

ItantifnIt tnste dy mensUat'mtnts tav ' ptovtdttd ton txtremelv vat tal I .. 'tiulat I''n ftt analvi tta'l
invt'i igat ions atd have itv'altd Several Important ptnsnomtnologlcal h ita Iots it'ncltdin tg If/7-i il' (otidit tons.

t ,tonaiit wind tunnel I It ta w- Tt' not I -'' ilost lo in tafv) at't'tlo tiamlt rl'ast,' tas in i t a r 4 ff motdl
ld wtr r''ldt e.d wlth atou tts It' linings.

R.tf er'or.t was mad, to Ialetlat ittos w 1t11 t that t ' p -,'s t . tf t11, -1. 1 I f t ft Is 1-1 f tt sSAT ttt

tiltt t urrt'not i it Stvtrt oscillating sloi k-wak itelat tin o .t. ' t t 'ntt s v r ?waatt oln Maht v's

pa , aft'' .
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Wall effects at transonic speeds are not well known even for transonic steady flow. Even more
severe difficulties exist in defining wall conditions and impedances for transonic unsteady flow. fests,
if practical, under conditions where wall effects are measurable, calculable, or minimized could be,
useful.

Additional experimental information is required for:

a. Higher Reynolds numbers.
b. Control surfaces.
c. Strong shock-boundary layer interactions and detached flows.
d. Practical 3D plantorms.
e. Plunge motions.
f. Fundamental measurements via laser techniques on unsteady boundary lavers, transition points,

wakes, etc.

General

Further aircraft flutter applications are required to define the full stability boundary vvr.us Ma,
number. Methods should be extended to cover the supersonic side of thte boundary ( Including lstuinic
edges).

Design time limitations and costs of parameter variations will require development of d-pendabtl, !-
economic transonic unsteady airload prediction methods for industrial use t- the I lutter enginetr.
Simpler phenomenological modeling of the viscous flow such as decamberirg and moving wedg.-nost-d ramnps,
etc should be valuable. Guideline recommendations from unsteady aerodvnami& iesearch sci i.nt st- it,
welcome.

More extensive applications of unsteady aerodynamic methods in transonl flutter saltyt v fa-t 11nu
would also be most welcome. Results showing the effects from parameter variat ions which , atii, noi , ,
nonlinearities would provide useful guidance. Garner's paper was well received and low, a sntal I
from Reynolds number but a large effect from angle of attack variations.

Comparison of calculated results with measured model data (and/or tlight data) at,- Tali ,:at, l:
much more are needed. Such comparisons should include frequencies, amplitude ratios and phas-. a- w 1
as velocity (Mach number, dynamic pressure). Discussion of causes of discrepancies would 1-us,-

Measurement of oscillating pressures on flutter models was recommended several time-s.
Pending accomplishment of some of the above developments, it was thought that !I ttk- ou!.ont1,-,

would use the simplest analysis model (such as transonic small disturbance theory with sim|,l. l,!,it
layer corrections, strip methods modified by 2D or 3D theory and measured data) in immnediatty ittui,applications. Again, good definition of the steady flow field and shock charact,,ristics was

reemphasized.

5. SUMMARY COMMENTS

lie AGARD SMI standard configuratons should be employed in experimntai ano analytical .imnws ti !At 1ons

in so far as is practical. This will provide a valuable exchange of information and will accel,.at, the.
state-of-the-art.

The subject matter presented at this Specialist's meeting at first glance seems quite varied and
even diverse. However, further evaluations will reveal many common threads and concerns, as wel I as
different approaches and limitations.

The ensemble of papers certainly demonstrates the tremendous progress in the last few Vears made
possible by more powerful computers, numerical analysis methods, special algorithms, individual inter-
pretations of physical phenomena and the computer graphics display of physical flow characteristics.

Transonic unsteady pressure measurements in free flight may be economically feasible as pick-a-back
measurements during extensive steady flow measurements on aircraft. Valuable information on Reynolds
number and (lack of) wall effects could be revealed.

A brief resume or updated listing of wind tunnel and fI lght observed bending, torsional, control
surface, and aerodynamic (rigid airfoil) buzz co.id be -i useful scientilic" and industrial referenc,,.

Flutter characteristics must he predicted withii all Iraction o spe-cilfcation ilight sal ety
margins. The challenge ho. evelopment of an econor -J rapid m.tfod fot arcurate prediction of
transonic unsteady airloads In industrial app

l  
It i .,re fore Sti A exlsts. However, much progr ss

has been accomplished in the last few years. .- 11). Is objectie will be achieved in the nva
future.
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analysis of' unsteady bChaviour of the hoUndarv layer. Ilhese iniproxelent, \, r. p,r,-cnllkd
as possible fulture tools for the in troduction of' visco(Is eHfects in classical ocl_' hIsl,,,I
applications, Some papers also dealt with actual means for couplinginvscid ;ild \1,, ,'tI
flow, and for deriving relatively simple mohels.
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